Application of interatomic interaction potentials for the simulation of nanosystem
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 166-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers approaches to modeling various nanosystems using model pairwise interatomic potentials. Cases of nanoparticles, nanotubes, fullerene molecules and atomic force microscope probes are considered.
Keywords: interaction potential, modeling of nanosystems, fullerene molecule, Lennard-Jones potential, Morse potential, interaction of the atomic force microscope probe.
Mots-clés : nanoparticles, nanotubes, fractal structures
@article{VKAM_2020_33_4_a14,
     author = {M. M. Bukhurova and S.Sh. Rekhviashvili},
     title = {Application of interatomic interaction potentials for the simulation of nanosystem},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {166--187},
     year = {2020},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a14/}
}
TY  - JOUR
AU  - M. M. Bukhurova
AU  - S.Sh. Rekhviashvili
TI  - Application of interatomic interaction potentials for the simulation of nanosystem
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 166
EP  - 187
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a14/
LA  - ru
ID  - VKAM_2020_33_4_a14
ER  - 
%0 Journal Article
%A M. M. Bukhurova
%A S.Sh. Rekhviashvili
%T Application of interatomic interaction potentials for the simulation of nanosystem
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 166-187
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a14/
%G ru
%F VKAM_2020_33_4_a14
M. M. Bukhurova; S.Sh. Rekhviashvili. Application of interatomic interaction potentials for the simulation of nanosystem. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 166-187. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a14/

[1] Rekhviashvili S. SH., “Atomno-silovoy mikroskop”, Matematicheskoye modelirovaniye, 15:4 (2003), 62–68 (in Russian)

[2] Magomedov M. N., Izucheniye mezhatomnogo vzaimodeystviya, obrazovaniya vakansiy i samodiffuzii v kristallakh, FIZMATLIT, M., 2010, 544 pp. (in Russian)

[3] Rit M., Nanokonstruirovanie v nauke i tekhnike. Vvedenie v mir nanorascheta, Regulyarnaya i khaoticheskaya dinamika, M.-Izhevsk, 2005, 160 pp. (in Russian)

[4] Dedkov G. V., “Mezhatomnyye potentsialy vzaimodeystviya v radiatsionnoy fizike”, UFN, 165:8 (1995), 919–953 (in Russian) | DOI

[5] Aleksandrov L. N., Novikov P. L., “Modelirovaniye obrazovaniya struktur poristogo kremniya”, Pis'ma v ZHETF, 65:9 (1997), 685–690 (in Russian)

[6] Roldugin V. I., Fizikokhimiya poverkhnosti, Izdatel'skiy Dom «Intellekt», Dolgoprudnyy, 2008, 568 pp. (in Russian)

[7] Rekhviashvili S. SH., Murga Z. V., “Adsorbtsiya vodoroda na fraktal'noy poverkhnosti”, Kondensirovannyye sredy i mezhfaznyye granitsy, 19:4 (2017), 561–566 (in Russian)

[8] Rekhviashvili S. SH., Kishtikova Ye. V., “O svoystvakh nepolyarnoy zhidkosti vnutri uglerodnoy nanotrubki”, Fizikokhimiya poverkhnosti i zashchita materialov, 46:1 (2010), 51–55 (in Russian) | MR

[9] Pul Ch., Ouens F., Nanotekhnologii, Tekhnosfera, M., 2007, 327 pp. (in Russian)

[10] Karmokova R. Yu., Rekhviashvili S. Sh., Karmokov A. M., “Vliyaniye akusticheskogo vozdeystviya na rasplav alyuminiya”, Fizika i khimiya obrabotki materialov, 2012, no. 5, 20–26 (in Russian)

[11] Taubert A., Wiesler U.-M., Mullen K., “Dendrimer-controlled one-pot synthesis of gold nanoparticles with a bimodal size distribution and their self-assembly in the solid state”, J. Mater. Chem, 13:3 (2003), 1090–1093 | DOI

[12] Girifalco L.A., “Molecular properties of $C_{60}$ in the gas an solid phases”, J. Phys. Chem, 96 (1992), 858–661 | DOI

[13] Rekhviashvili S. SH., “Poverkhnostnoye natyazheniye zhidkikh inertnykh gazov”, Pis'ma v ZHTF, 38:22 (2012), 9–14 (in Russian)

[14] Khokonov Kh. B., Zadumkin S. N., “Zavisimost' mezhfaznoy energii metallov na granitse kristall-rasplav ot razmera chastitsy”, Poverkhnostnyye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh, Kabardino-Balkarskoye knizhnoye izdatel'stvo, Nal'chik, 1965, 75–77 (in Russian)

[15] Moiseyev Yu. N., Mostepanenko V. M., Panov V. I., Sokolov I. Yu., “Eksperimental'noye i teoreticheskoye issledovaniye sil i prostranstvennogo razresheniya v atomno-silovom mikroskope”, ZHTF, 60:1 (1990), 141–148 (in Russian)

[16] Lifshits Ye. M., Pitayevskiy L. P., Statisticheskaya fizika. Teoriya kondensirovannogo sostoyaniya, v. 2, FIZMATLIT, M., 2004, 496 pp. (in Russian)

[17] Butter H., Gerlach E., “Van Der Waals-Interaction of ionic and covalent crystals”, Chem. Phys. Lett, 5:2 (1970), 91–92 | DOI