Mathematical and algorithmic models of reconfiguration of a modular robotic system
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 122-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relevance of a research problem is justified, which consists in development of the algorithmic models and software components for autonomous connection and interaction of the modular homogeneous robots. A review of existing modular robotic devices and modular robotic systems is presented. Developed conceptual and set-theoretic models of a modular robotic system are considered. Algorithms of physical connection and data exchange of homogeneous modular robotic devices are described in context of composition of coupled spatial structures.
Keywords: algorithm, modular robotic device, modular robotic system, modular robot.
Mots-clés : configuration, reconfiguration
@article{VKAM_2020_33_4_a10,
     author = {N. A. Pavliuk},
     title = {Mathematical and algorithmic models of reconfiguration of a modular robotic system},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {122--131},
     year = {2020},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a10/}
}
TY  - JOUR
AU  - N. A. Pavliuk
TI  - Mathematical and algorithmic models of reconfiguration of a modular robotic system
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 122
EP  - 131
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a10/
LA  - ru
ID  - VKAM_2020_33_4_a10
ER  - 
%0 Journal Article
%A N. A. Pavliuk
%T Mathematical and algorithmic models of reconfiguration of a modular robotic system
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 122-131
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a10/
%G ru
%F VKAM_2020_33_4_a10
N. A. Pavliuk. Mathematical and algorithmic models of reconfiguration of a modular robotic system. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 33 (2020) no. 4, pp. 122-131. http://geodesic.mathdoc.fr/item/VKAM_2020_33_4_a10/

[1] Man'ko S.V., Lohin V. M., Romanov M. P., “Koncepcija postroenija mul'tiagentnyh robototehnicheskih sistem”, Vestnik MGTU MIRJeA, 3 (2015) (in Russian)

[2] Lohin V. M., Man'ko S. V., Romanov M. P., Diane S. A., “Perspektivy primenenija, principy postroenija i problemy razrabotki mul'tiagentnyh robototehnicheskih sistem.”, XII vserossijskoe soveshhanie po problemam upravlenija VSPU, Moskva, 2014 (in Russian)

[3] Andreev V. P., Pletenev P. F., “Metod informacionnogo vzaimodejstvija dlja sistem raspredeljonnogo upravlenija v robotah s modul'noj arhitekturoj”, Trudy SPIIRAN, 57:2 (2018), 134-160 (in Russian)

[4] Andreev V. P., Kim V. L., Poduraev Ju. V., “Setevye reshenija v arhitekture geterogennyh modul'nyh mobil'nyh robotov”, Robototehnika i tehnicheskaja kibernetika., 3:12 (2016), 23-29 (in Russian)

[5] Andreev V. P., Poduraev Ju. V., “Funkcional'no-modul'nyj princip postroenija geterogennyh mobil'nyh robotov”, Jekstremal'naja robototehnika, 1:1 (2016), 39-49 (in Russian)

[6] Ronzhin A. L., Pavljuk N. A., Mihal'chenko D. I., “Konstrukcija i principy funkcionirovanija magnitno-mehanicheskih konnektorov modul'nogo robota”, Progress transportnyh sredstv i sistem, VI Mezhdunarodnaja konferencija, 2018, 9-11 (in Russian)

[7] Hiroshi Kawano, “Distributed tunneling reconfiguration of cubic modular robots without meta-module’s disassembling in severe space requirement”, Robotics and Autonomous Systems, 124 (2020)

[8] Rubenstein M., Shen W. M., “Scalable self-assembly and self-repair in a collective of robots”, IEEE/RSJ international conference on Intelligent robots and systems, IEEE, 2009, 1484-1489

[9] Rubenstein M., Ahler C., Nagpal R., “Kilobot: A low cost scalable robot system for collective behaviors”, IEEE International Conference on Robotics and Automation, 2012, 3293-3298

[10] Hasbulah M. H., Jafar F. A., Hisham Nordin M., Yokota K., “Towards EEG-Based Brain-Controlled Modular Robots: Preliminary Framework by Interfacing OpenVIBE, Python and V-REP for Simulate Modular Robot Control”, Intelligent Manufacturing Mechatronics, Lecture Notes in Mechanical Engineering, Springer, Singapore, 2018, 415-426 (in Russian)

[11] Manzoor, S., Cho, Y.G. Choi, Y., “Neural Oscillator Based CPG for Various Rhythmic Motions of Modular Snake Robot with Active Joints”, J Intell Robot Syst, 94 (2019), 641–654 | DOI

[12] Pshihopov V. H., Medvedev M. Ju., “Gruppovoe upravlenie dvizheniem mobil'nyh robotov v neopredelennoj srede s ispol'zovaniem neustojchivyh rezhimov”, Trudy SPIIRAN, 5:60 (2018), 39-63 (in Russian)

[13] Veselov G. E., Lebedev B. K., Lebedev O. B., “Gibridnyj algoritm upravlenija roem gomogennyh robotov v uslovijah ogranichennogo prostranstva”, Vestnik RGUPS, 2 (2020), 72-82 (in Russian)

[14] Demin A. V., “Adaptivnoe upravlenie robotami s proizvol'no zadannoj modul'noj konstrukciej”, Izvestija Irkutskogo gosudarstvennogo universiteta. Serija «Matematika», 29 (2019), 10-21 (in Russian) | Zbl