On solvability of nonlinear integro-differential equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 127-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider initial problem for nonlinear integro-differential equation related to peridynamic model. The existence and uniqueness of solution are proved.
Keywords: integro-differential equation, peridynamic, Sobolev space.
Mots-clés : Fourier transform
@article{VKAM_2020_32_3_a9,
     author = {A. V. Yuldasheva},
     title = {On solvability of nonlinear integro-differential equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {127--134},
     year = {2020},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a9/}
}
TY  - JOUR
AU  - A. V. Yuldasheva
TI  - On solvability of nonlinear integro-differential equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 127
EP  - 134
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a9/
LA  - ru
ID  - VKAM_2020_32_3_a9
ER  - 
%0 Journal Article
%A A. V. Yuldasheva
%T On solvability of nonlinear integro-differential equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 127-134
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a9/
%G ru
%F VKAM_2020_32_3_a9
A. V. Yuldasheva. On solvability of nonlinear integro-differential equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 127-134. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a9/

[1] Emmrich E., Pusht D., “Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics”, Nonlinearity, 28 (2015), 285-307 | DOI | MR | Zbl

[2] Silling S. A., Lehoucq R. B., “eridynamic theory of solid mechanics”, Adv.Appl.Mech., 44 (2010), 73-168 | DOI

[3] Yuldasheva A. V., “The linear peridynamic model of elasticity theory”, Lob.J.Math., 41:1 (2020), 137-144 | MR | Zbl

[4] Duruk N., Erbay H. A. and Erkip A., “Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity.”, Nonlinearity, 23(1):107 (2009), 520-533 | MR

[5] Nikol'skiy S. M., Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York, 1975, 418 pp. | MR