Mots-clés : decomposition formula
@article{VKAM_2020_32_3_a8,
author = {T. G. Ergashev and A. Hasanov},
title = {Holmgren problem for elliptic equation with singular coefficients},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {114--126},
year = {2020},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/}
}
TY - JOUR AU - T. G. Ergashev AU - A. Hasanov TI - Holmgren problem for elliptic equation with singular coefficients JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 114 EP - 126 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/ LA - en ID - VKAM_2020_32_3_a8 ER -
T. G. Ergashev; A. Hasanov. Holmgren problem for elliptic equation with singular coefficients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 114-126. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/
[1] Bers L., Mathematical aspects of subsonic and transonic gas dynamics, New York. London, 1958 | MR
[2] Serbina L. I., “A problem for the linearized Boussinesq equation with a nonlocal Samarskii condition”, Differential Equations, 38(8) (2002), 1187–1194 | DOI | MR
[3] Ergashev T. G., “Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Ufa Mathematical Journal, 10(4) (2018), 111–122 | DOI | MR
[4] Srivastava H. M., Hasanov A., Choi J., “Double-Layer Potentials for a Generalized Bi-Axially Symmetric Helmholtz Equation”, Sohag Journal of Mathematics, 2(1) (2015), 1–10
[5] Weinstein A., “Generalized axially symmetric potentials theory”, Bull. Amer. Math. Soc., 59 (1959), 20–38 | DOI | MR
[6] Holmgren E., “Sur un probleme aux limites pour l'equation $y^mu_{xx}+u_{yy}=0$”, Arkiv for matematik, astronomi och Fysik, 19B(14) (1926), 1–3
[7] Karimov E. T., “On a boundary problem for 3-D elliptic equation with singular coefficients”, Progress in Analysis and Its Applications, Proceeding of the 7th International ISAAC Congress, 13–18 July 2009, Imperial College London, UK, 2009, 619–625 | MR
[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, v. I, McGraw-Hill Book Company, New York, Toronto and London, 1953
[9] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Halsted Press, New York, Chichester, Brisbane and Toronto, 1985, 428 pp. | MR
[10] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions”, The Quarterly Journal of Mathematics, 11 (1940), 249–270 | DOI | MR
[11] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions. II”, The Quarterly Journal of Mathematics, 12 (1941), 112–128 | DOI | MR
[12] Hasanov A., Srivastava H. M., “Some decomposition formulas associated with the Lauricella function $F_{A}^{(r)} $ and other multiple hypergeometric functions”, Appl. Math. Lett., 19(2) (2006), 113–121 | DOI | MR
[13] Hasanov A., Srivastava H. M., “Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions”, Computers and Mathematics with Applications, 53(7) (2007), 1119–1128 | DOI | MR
[14] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, Journal of Siberian Federal University. Mathematics and Physics, 13(1) (2020), 48–57 | DOI | MR
[15] Mikhlin S. G., An Advanced Course of Mathematical Physics. Series in Applied Mathematics and Mechanics, v. 11, North-Holland Publishing, Amsterdam, London, 1970 | MR
[16] Rassias M., Lecture Notes on Mixed Type Partial Differential Equations, World Scientific, 1990 | MR