Holmgren problem for elliptic equation with singular coefficients
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 114-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work, we investigate the Holmgren problem for an multidimensional elliptic equation with several singular coefficients. We use a fundamental solution of the equation, containing Lauricella's hypergeometric function in many variables. Then using an «abc» method, the uniqueness for the solution of the Holmgren problem is proved. Applying a method of Green's function, we are able to find the solution of the problem in an explicit form. Moreover, decomposition and summation formulae, formulae of differentiation and some adjacent relations for Lauricella's hypergeometric functions in many variables were used in order to find the explicit solution for the formulated problem.
Keywords: Holmgren problem, multidimensional elliptic equations with several singular coefficients, summation formula, Lauricella hypergeometric function in many variables, Green's function.
Mots-clés : decomposition formula
@article{VKAM_2020_32_3_a8,
     author = {T. G. Ergashev and A. Hasanov},
     title = {Holmgren problem for elliptic equation with singular coefficients},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {114--126},
     year = {2020},
     volume = {32},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/}
}
TY  - JOUR
AU  - T. G. Ergashev
AU  - A. Hasanov
TI  - Holmgren problem for elliptic equation with singular coefficients
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 114
EP  - 126
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/
LA  - en
ID  - VKAM_2020_32_3_a8
ER  - 
%0 Journal Article
%A T. G. Ergashev
%A A. Hasanov
%T Holmgren problem for elliptic equation with singular coefficients
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 114-126
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/
%G en
%F VKAM_2020_32_3_a8
T. G. Ergashev; A. Hasanov. Holmgren problem for elliptic equation with singular coefficients. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 114-126. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a8/

[1] Bers L., Mathematical aspects of subsonic and transonic gas dynamics, New York. London, 1958 | MR

[2] Serbina L. I., “A problem for the linearized Boussinesq equation with a nonlocal Samarskii condition”, Differential Equations, 38(8) (2002), 1187–1194 | DOI | MR

[3] Ergashev T. G., “Third double-layer potential for a generalized bi-axially symmetric Helmholtz equation”, Ufa Mathematical Journal, 10(4) (2018), 111–122 | DOI | MR

[4] Srivastava H. M., Hasanov A., Choi J., “Double-Layer Potentials for a Generalized Bi-Axially Symmetric Helmholtz Equation”, Sohag Journal of Mathematics, 2(1) (2015), 1–10

[5] Weinstein A., “Generalized axially symmetric potentials theory”, Bull. Amer. Math. Soc., 59 (1959), 20–38 | DOI | MR

[6] Holmgren E., “Sur un probleme aux limites pour l'equation $y^mu_{xx}+u_{yy}=0$”, Arkiv for matematik, astronomi och Fysik, 19B(14) (1926), 1–3

[7] Karimov E. T., “On a boundary problem for 3-D elliptic equation with singular coefficients”, Progress in Analysis and Its Applications, Proceeding of the 7th International ISAAC Congress, 13–18 July 2009, Imperial College London, UK, 2009, 619–625 | MR

[8] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher Transcendental Functions, v. I, McGraw-Hill Book Company, New York, Toronto and London, 1953

[9] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, Halsted Press, New York, Chichester, Brisbane and Toronto, 1985, 428 pp. | MR

[10] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions”, The Quarterly Journal of Mathematics, 11 (1940), 249–270 | DOI | MR

[11] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions. II”, The Quarterly Journal of Mathematics, 12 (1941), 112–128 | DOI | MR

[12] Hasanov A., Srivastava H. M., “Some decomposition formulas associated with the Lauricella function $F_{A}^{(r)} $ and other multiple hypergeometric functions”, Appl. Math. Lett., 19(2) (2006), 113–121 | DOI | MR

[13] Hasanov A., Srivastava H. M., “Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions”, Computers and Mathematics with Applications, 53(7) (2007), 1119–1128 | DOI | MR

[14] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, Journal of Siberian Federal University. Mathematics and Physics, 13(1) (2020), 48–57 | DOI | MR

[15] Mikhlin S. G., An Advanced Course of Mathematical Physics. Series in Applied Mathematics and Mechanics, v. 11, North-Holland Publishing, Amsterdam, London, 1970 | MR

[16] Rassias M., Lecture Notes on Mixed Type Partial Differential Equations, World Scientific, 1990 | MR