Mots-clés : pseudoconvex domain
@article{VKAM_2020_32_3_a7,
author = {R. F. Shamoyan and E. B. Tomashevskaya},
title = {On new sharp theorems for multifunctional {BMOA} type spaces in bounded pseudoconvex domains},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {102--113},
year = {2020},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a7/}
}
TY - JOUR AU - R. F. Shamoyan AU - E. B. Tomashevskaya TI - On new sharp theorems for multifunctional BMOA type spaces in bounded pseudoconvex domains JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 102 EP - 113 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a7/ LA - en ID - VKAM_2020_32_3_a7 ER -
%0 Journal Article %A R. F. Shamoyan %A E. B. Tomashevskaya %T On new sharp theorems for multifunctional BMOA type spaces in bounded pseudoconvex domains %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 102-113 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a7/ %G en %F VKAM_2020_32_3_a7
R. F. Shamoyan; E. B. Tomashevskaya. On new sharp theorems for multifunctional BMOA type spaces in bounded pseudoconvex domains. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 102-113. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a7/
[16] Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measure in strongly pseudoconvex domains”, J. Func. Anal., 263:11 (2012), 3449-3491 | DOI | MR | Zbl
[17] Andersson M., Carlsson H., “Qp spaces in strictly pseudoconvex domains”, Journal d'Analyse Mathematique, 84 (2001), 335-359 | DOI | MR | Zbl
[18] Arsenovic M., Shamoyan R., “On some sharp estimates for distances in bounded strictly pseudoconvex domains”, Bulletin Korean Math. Society, 52:1 (2015), 85-103 | DOI | MR | Zbl
[19] Beatrous F., Jr., “$L^{p}$ estimates for extensions of holomorphic functions”, Michigan Math. Jour., 32:3 (1985), 361-380 | DOI | MR | Zbl
[20] Bekolle D., Bonami A., Garrigos G. and others., Lecture notes on Bergman projectors in tube domains over cones., Procedings of the international Workshop on classical Analysis, Yaounde, 2001, 75 pp. | MR | Zbl
[21] Cohn W. S., “Weighted Bergman projections and tangential area integrals”, Studia Math., 106:1 (1993), 59-76 | DOI | MR | Zbl
[22] Faraut J., Koranyi A., Analysis on symmetric cones, Oxford Mathematical Monographs, v. XII, Oxford University Press, New York, 1994, 382 pp. | MR | Zbl
[23] Krantz S.G., Li S.-Y., “On decomposition theorems for Hardy spaces on domains in Cn and applications”, Jour, Four. Analysis and Applic, 2 (1995), 65-107 | DOI | MR | Zbl
[24] Luecking D., “Representations and duality in weighted spaces of analytic functions”, Indiana Univ. Math. Journal, 34:2 (1985), 319-336 | DOI | MR | Zbl
[25] Ortega J.M., Fabrega J., “Mixed-norm spaces and interpolations”, Studia Math., 109:3 (1994), 233-254 | MR | Zbl
[26] Range R. M., Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics, v. 108, Springer-Verlag, New York, 1986 | MR | Zbl
[27] Rochberg R., “Decomposition theorems for Bergman spaces and their applications, Operators and function theory (Lancaster 1984)”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 153 (1985), 225–277 | MR | Zbl
[28] Shamoyan R. F. “On decomposition theorems of multifunctional Bergman type spaces in some domains in Cn”, Vestnik KRAUNC. Fiz.-mat. nauki., 26:1 (2019), 28-45 | MR
[29] Shamoyan R. F., Loseva V. V., “On Hardy type spaces in some domains in Cn and related problems”, Vestnik KRAUNC. Fiz.-mat. nauki, 27:2 (2019), 12–37 | MR
[30] Shamoyan R.F., Tomashevskaya E.B. “On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains”, Vestnik KRAUNC. Fiz.-mat. nauki, 30:1 (2020), 42-58 | MR
[31] Shamoyan R. F., Tomashevskaya E. B. “On New Decomposition Theorems in some Analytic Function Spaces in Bounded Pseudoconvex Domains”, Journal of Siberian Federal University, Mathematics and Physics, 13(4) (2020), 503-514 | MR
[32] Zhu K., Spaces of Holomorphic Functions in the unit ball, Springer-Verlag-New York, 2005, 226 pp. | MR | Zbl