@article{VKAM_2020_32_3_a6,
author = {A. R. Hayotov and F. A. Nuraliev and R. I. Parovik and Kh. M. Shadimetov},
title = {Euler-Maclaurin type optimal formulas for numerical integration in {Sobolev} space},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {75--101},
year = {2020},
volume = {32},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/}
}
TY - JOUR AU - A. R. Hayotov AU - F. A. Nuraliev AU - R. I. Parovik AU - Kh. M. Shadimetov TI - Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 75 EP - 101 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/ LA - en ID - VKAM_2020_32_3_a6 ER -
%0 Journal Article %A A. R. Hayotov %A F. A. Nuraliev %A R. I. Parovik %A Kh. M. Shadimetov %T Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 75-101 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/ %G en %F VKAM_2020_32_3_a6
A. R. Hayotov; F. A. Nuraliev; R. I. Parovik; Kh. M. Shadimetov. Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 75-101. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/
[1] Akhmedov D. M., Hayotov A. R., Shadimetov Kh. M., “Optimal quadrature formulas with derivatives for Cauchy type singular integrals”, Applied Mathematics and Computation, 317 (2018), 150-159 | DOI | MR
[2] Babuška I., “Optimal quadrature formulas”, Dokladi Akad. Nauk SSSR, 149 (1963), 227–229 (in Russian) | MR
[3] Blaga P., Coman Gh., “Some problems on optimal quadrature”, Stud. Univ. Babeş-Bolyai Math., 52:4 (2007), 21–44 | MR
[4] Bojanov B., “Optimal quadrature formulas”, Uspekhi Mat. Nauk, 60:6(366) (2005), 33–52 (in Russian) | DOI | MR
[5] Boltaev N. D., Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “Optimal quadrature formulas for numerical evaluation of Fourier coefficients in $W_2^{(m,m-1)}$”, Journal of Applied Analysis and Computation, 7:4 (2017), 1233-1266 | MR
[6] Boltaev N. D., Hayotov A. R., Shadimetov Kh. M., “Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space $L_2^{(m)}$,”, Numerical Algorithms, 74 (2017), 307-336 | DOI | MR
[7] Catinaş T., Coman Gh., “Optimal quadrature formulas based on the $\phi$-function method”, Stud. Univ. Babeş-Bolyai Math., 51:1 (2006), 49–64 | MR
[8] Chakhkiev M. A., “Linear differential operators with real spectrum, and optimal quadrature formulas”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 1078–1108 (in Russian) | MR
[9] Coman Gh., “Quadrature formulas of Sard type”, Studia Univ. Babeş-Bolyai Ser. Math.-Mech., 17:2 (1972), 73–77 | MR
[10] Coman Gh., “Monosplines and optimal quadrature formulae in $L_p$”, Rend. Mat., 6:5 (1972), 567–577 | MR
[11] Gelfond A. O., Calculus of Finite Differences, Nauka, Moscow, 1967 (in Russian) | MR
[12] Ghizzetti A., Ossicini A., Quadrature Formulae, Akademie Verlag, Berlin, 1970 | MR
[13] Hamming R. W., Numerical Methods for Scientists and Engineers, McGraw Bill Book Company, Inc., USA, 1962 | MR
[14] Hayotov A. R., Jeon S., Lee C.-O., “On an optimal quadrature formula for approximation of Fourier integrals in the space $L_2^{(1)}$”, Journal of Computational and Applied Mathematics, 372 (2020), 112713 | DOI | MR
[15] Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “On an optimal quadrature formula in the sense of Sard”, Numerical Algorithms, 57:4 (2011), 487-510 | DOI | MR
[16] Hayotov A. R., Nuraliev F. A., Shadimetov Kh. M., “Optimal Quadrature Formulas with Derivative in the Space $L_2^{(m)}(0,1)$”, American Journal of Numerical Analysis, 2:4 (2014), 115-127 | MR
[17] Köhler P., “On the weights of Sard's quadrature formulas”, Calcolo, 25 (1988), 169–186 | DOI | MR
[18] Lanzara F., “On optimal quadrature formulae”, J. Ineq. Appl., 5 (2000), 201–225 | MR
[19] Maljukov A. A., Orlov I. I., “Construction of coefficients of the best quadrature formula for the class $W_{L_{2}}^{(2)}(M; ON)$ with equally spaced nodes”, Optimization methods and operations research, applied mathematics, 191 (1976), 174–177 (in Russian) | MR
[20] Meyers L. F., Sard A., “Best approximate integration formulas”, J. Math. Physics, 29 (1950), 118–123 | DOI | MR
[21] Nikol'skii S. M., “To question about estimation of approximation by quadrature formulas”, Uspekhi Matem. Nauk, 5:2(36) (1950), 165–177 (in Russian) | MR
[22] Nikol'skii S. M., Quadrature Formulas, Nauka, Moscow, 1988 (in Russian) | MR
[23] Sard A., “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71 (1949), 80–91 | DOI | MR
[24] Sard A., Linear approximation, AMS, 1963 | MR
[25] Schoenberg I.J., “On monosplines of least deviation and best quadrature formulae”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 144–170 | DOI | MR
[26] Schoenberg I. J., “On monosplines of least square deviation and best quadrature formulae II”, SIAM J. Numer. Anal., 3:2 (1966), 321–328 | DOI | MR
[27] Schoenberg I. J. , Silliman S. D., “On semicardinal quadrature formulae”, Math. Comp., 126 (1974), 483–497 | DOI | MR
[28] Shadimetov Kh. M., Optimal formulas of approximate integration for differentiable functions, Candidate dissertation, Novosibirsk, 1983, 140 pp.
[29] Shadimetov Kh. M., “Optimal quadrature formulas in $L\sp{m}\sb{2}(\Omega )$ and $L\sp{m}\sb{2}(R\sp{1})$”, Dokl. Akad. Nauk UzSSR, 1983, no. 3, 5–8 (in Russian) | MR
[30] Shadimetov Kh. M., “The discrete analogue of the differential operator $d^{2m}/dx^{2m}$ and its construction”, Questions of Computations and Applied Mathematics, 1985, 22-35
[31] Shadimetov Kh. M., “Optimal Lattice Quadrature and Cubature Formulas”, Doklady Mathematics, 63:1 (2001), 92-94 | MR
[32] Shadimetov Kh. M., “Construction of weight optimal quadrature formulas in the space $L_2^{(m)} (0,N)$”, Siberian J. Comput. Math., 5:3 (2002), 275–293 (in Russian) | MR
[33] Shadimetov Kh. M., Hayotov A. R., “Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space”, J. Comput. Appl. Math., 235 (2011), 1114–1128 | DOI | MR
[34] Shadimetov Kh. M., Hayotov A. R., “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211-243 | DOI | MR
[35] Shadimetov Kh. M., Hayotov A. R., Azamov S. S., “Optimal quadrature formula in $K_2{(P_2)}$ space”, Applied Numerical Mathematics, 62 (2012), 1893-1909 | DOI | MR
[36] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “On an optimal quadrature formula in Sobolev space $L_2^{(m)}(0,1)$”, Journal of Computational and Applied Mathematics, 243 (2013), 91-112 | DOI | MR
[37] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, Moscow, 1974 (in Russian) | MR
[38] Sobolev S. L., “The coefficients of optimal quadrature formulas”, Selected Works of S.L. Sobolev, Springer, 2006, 561–566 | DOI | MR
[39] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR
[40] Zagirova F. Ya., On construction of optimal quadrature formulas with equal spaced nodes, Preprint No. 25, Institute of Mathematics SD of AS of USSR, Novosibirsk, 1982, 28 pp. (in Russian) | MR
[41] Zhamalov Z. Zh., Shadimetov Kh. M., “About optimal quadrature formulas”, Dokl. Akademii Nauk UzSSR, 7 (1980), 3–5 (in Russian) | MR
[42] Zhensikbaev A. A., “Monosplines of minimal norm and the best quadrature formulas”, Uspekhi Matem. Nauk, 36 (1981), 107–159 (in Russian) | MR