Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 75-101
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper the problem of construction of optimal quadrature formulas in the sense of Sard in the space $L_2(m)(0,1)$ is considered. Here the quadrature sum consists of values of the integrand at nodes and values of the first and the third derivatives of the integrand at the end points of the integration interval. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number $N \ge m-3$ and for any $m \ge 4$ using S. L. Sobolev method which is based on the discrete analogue of the differential operator $d^{2m}/dx^{2m}$. In particular, for $m = 4$ and $m = 5$ optimality of the classical Euler-Maclaurin quadrature formula is obtained. Starting from $m=6$ new optimal quadrature formulas are obtained. At the end of this work some numerical results are presented.
@article{VKAM_2020_32_3_a6,
     author = {A. R. Hayotov and F. A. Nuraliev and R. I. Parovik and Kh. M. Shadimetov},
     title = {Euler-Maclaurin type optimal formulas for numerical integration in {Sobolev} space},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {75--101},
     year = {2020},
     volume = {32},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/}
}
TY  - JOUR
AU  - A. R. Hayotov
AU  - F. A. Nuraliev
AU  - R. I. Parovik
AU  - Kh. M. Shadimetov
TI  - Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 75
EP  - 101
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/
LA  - en
ID  - VKAM_2020_32_3_a6
ER  - 
%0 Journal Article
%A A. R. Hayotov
%A F. A. Nuraliev
%A R. I. Parovik
%A Kh. M. Shadimetov
%T Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 75-101
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/
%G en
%F VKAM_2020_32_3_a6
A. R. Hayotov; F. A. Nuraliev; R. I. Parovik; Kh. M. Shadimetov. Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 75-101. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a6/

[1] Akhmedov D. M., Hayotov A. R., Shadimetov Kh. M., “Optimal quadrature formulas with derivatives for Cauchy type singular integrals”, Applied Mathematics and Computation, 317 (2018), 150-159 | DOI | MR

[2] Babuška I., “Optimal quadrature formulas”, Dokladi Akad. Nauk SSSR, 149 (1963), 227–229 (in Russian) | MR

[3] Blaga P., Coman Gh., “Some problems on optimal quadrature”, Stud. Univ. Babeş-Bolyai Math., 52:4 (2007), 21–44 | MR

[4] Bojanov B., “Optimal quadrature formulas”, Uspekhi Mat. Nauk, 60:6(366) (2005), 33–52 (in Russian) | DOI | MR

[5] Boltaev N. D., Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “Optimal quadrature formulas for numerical evaluation of Fourier coefficients in $W_2^{(m,m-1)}$”, Journal of Applied Analysis and Computation, 7:4 (2017), 1233-1266 | MR

[6] Boltaev N. D., Hayotov A. R., Shadimetov Kh. M., “Construction of optimal quadrature formulas for Fourier coefficients in Sobolev space $L_2^{(m)}$,”, Numerical Algorithms, 74 (2017), 307-336 | DOI | MR

[7] Catinaş T., Coman Gh., “Optimal quadrature formulas based on the $\phi$-function method”, Stud. Univ. Babeş-Bolyai Math., 51:1 (2006), 49–64 | MR

[8] Chakhkiev M. A., “Linear differential operators with real spectrum, and optimal quadrature formulas”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 1078–1108 (in Russian) | MR

[9] Coman Gh., “Quadrature formulas of Sard type”, Studia Univ. Babeş-Bolyai Ser. Math.-Mech., 17:2 (1972), 73–77 | MR

[10] Coman Gh., “Monosplines and optimal quadrature formulae in $L_p$”, Rend. Mat., 6:5 (1972), 567–577 | MR

[11] Gelfond A. O., Calculus of Finite Differences, Nauka, Moscow, 1967 (in Russian) | MR

[12] Ghizzetti A., Ossicini A., Quadrature Formulae, Akademie Verlag, Berlin, 1970 | MR

[13] Hamming R. W., Numerical Methods for Scientists and Engineers, McGraw Bill Book Company, Inc., USA, 1962 | MR

[14] Hayotov A. R., Jeon S., Lee C.-O., “On an optimal quadrature formula for approximation of Fourier integrals in the space $L_2^{(1)}$”, Journal of Computational and Applied Mathematics, 372 (2020), 112713 | DOI | MR

[15] Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “On an optimal quadrature formula in the sense of Sard”, Numerical Algorithms, 57:4 (2011), 487-510 | DOI | MR

[16] Hayotov A. R., Nuraliev F. A., Shadimetov Kh. M., “Optimal Quadrature Formulas with Derivative in the Space $L_2^{(m)}(0,1)$”, American Journal of Numerical Analysis, 2:4 (2014), 115-127 | MR

[17] Köhler P., “On the weights of Sard's quadrature formulas”, Calcolo, 25 (1988), 169–186 | DOI | MR

[18] Lanzara F., “On optimal quadrature formulae”, J. Ineq. Appl., 5 (2000), 201–225 | MR

[19] Maljukov A. A., Orlov I. I., “Construction of coefficients of the best quadrature formula for the class $W_{L_{2}}^{(2)}(M; ON)$ with equally spaced nodes”, Optimization methods and operations research, applied mathematics, 191 (1976), 174–177 (in Russian) | MR

[20] Meyers L. F., Sard A., “Best approximate integration formulas”, J. Math. Physics, 29 (1950), 118–123 | DOI | MR

[21] Nikol'skii S. M., “To question about estimation of approximation by quadrature formulas”, Uspekhi Matem. Nauk, 5:2(36) (1950), 165–177 (in Russian) | MR

[22] Nikol'skii S. M., Quadrature Formulas, Nauka, Moscow, 1988 (in Russian) | MR

[23] Sard A., “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71 (1949), 80–91 | DOI | MR

[24] Sard A., Linear approximation, AMS, 1963 | MR

[25] Schoenberg I.J., “On monosplines of least deviation and best quadrature formulae”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 144–170 | DOI | MR

[26] Schoenberg I. J., “On monosplines of least square deviation and best quadrature formulae II”, SIAM J. Numer. Anal., 3:2 (1966), 321–328 | DOI | MR

[27] Schoenberg I. J. , Silliman S. D., “On semicardinal quadrature formulae”, Math. Comp., 126 (1974), 483–497 | DOI | MR

[28] Shadimetov Kh. M., Optimal formulas of approximate integration for differentiable functions, Candidate dissertation, Novosibirsk, 1983, 140 pp.

[29] Shadimetov Kh. M., “Optimal quadrature formulas in $L\sp{m}\sb{2}(\Omega )$ and $L\sp{m}\sb{2}(R\sp{1})$”, Dokl. Akad. Nauk UzSSR, 1983, no. 3, 5–8 (in Russian) | MR

[30] Shadimetov Kh. M., “The discrete analogue of the differential operator $d^{2m}/dx^{2m}$ and its construction”, Questions of Computations and Applied Mathematics, 1985, 22-35

[31] Shadimetov Kh. M., “Optimal Lattice Quadrature and Cubature Formulas”, Doklady Mathematics, 63:1 (2001), 92-94 | MR

[32] Shadimetov Kh. M., “Construction of weight optimal quadrature formulas in the space $L_2^{(m)} (0,N)$”, Siberian J. Comput. Math., 5:3 (2002), 275–293 (in Russian) | MR

[33] Shadimetov Kh. M., Hayotov A. R., “Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space”, J. Comput. Appl. Math., 235 (2011), 1114–1128 | DOI | MR

[34] Shadimetov Kh. M., Hayotov A. R., “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211-243 | DOI | MR

[35] Shadimetov Kh. M., Hayotov A. R., Azamov S. S., “Optimal quadrature formula in $K_2{(P_2)}$ space”, Applied Numerical Mathematics, 62 (2012), 1893-1909 | DOI | MR

[36] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “On an optimal quadrature formula in Sobolev space $L_2^{(m)}(0,1)$”, Journal of Computational and Applied Mathematics, 243 (2013), 91-112 | DOI | MR

[37] Sobolev S. L., Introduction to the Theory of Cubature Formulas, Nauka, Moscow, 1974 (in Russian) | MR

[38] Sobolev S. L., “The coefficients of optimal quadrature formulas”, Selected Works of S.L. Sobolev, Springer, 2006, 561–566 | DOI | MR

[39] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR

[40] Zagirova F. Ya., On construction of optimal quadrature formulas with equal spaced nodes, Preprint No. 25, Institute of Mathematics SD of AS of USSR, Novosibirsk, 1982, 28 pp. (in Russian) | MR

[41] Zhamalov Z. Zh., Shadimetov Kh. M., “About optimal quadrature formulas”, Dokl. Akademii Nauk UzSSR, 7 (1980), 3–5 (in Russian) | MR

[42] Zhensikbaev A. A., “Monosplines of minimal norm and the best quadrature formulas”, Uspekhi Matem. Nauk, 36 (1981), 107–159 (in Russian) | MR