Boundary problem with integral displacement for the model equation of elliptic type
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 65-74
Voir la notice de l'article provenant de la source Math-Net.Ru
For a model second order elliptic equation is considered the method of reduction of nonlocal boundary value problems with integral offset to the local boundary value problems for equations of higher order composite type. The solvability of tasks is investigated.
Keywords:
integral conditions, problems with displacement, the equation Hadamard reduction method, nonlocal boundary value problems, regular solutionintegral conditions, problems with displacement, the equation Hadamard reduction method, nonlocal boundary value problems, regular solution.
Mots-clés : Laplace equation, Laplace equation
Mots-clés : Laplace equation, Laplace equation
@article{VKAM_2020_32_3_a5,
author = {Z. A. Nakhusheva},
title = {Boundary problem with integral displacement for the model equation of elliptic type},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {65--74},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a5/}
}
TY - JOUR AU - Z. A. Nakhusheva TI - Boundary problem with integral displacement for the model equation of elliptic type JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 65 EP - 74 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a5/ LA - ru ID - VKAM_2020_32_3_a5 ER -
Z. A. Nakhusheva. Boundary problem with integral displacement for the model equation of elliptic type. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 65-74. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a5/