@article{VKAM_2020_32_3_a13,
author = {G. A. Yakovlev and A. A. Kobzev and S. V. Smirnov and I. V. Belyaeva and M. Yu. Arshinov and V. S. Yakovleva},
title = {Synchronous monitoring of $\gamma$, $\beta$-background and atmospheric precipitations in geophysical observatories of {IMCES} {SB} {RAS} and {BEC} {IAO} {SB} {RAS}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {165--179},
year = {2020},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a13/}
}
TY - JOUR AU - G. A. Yakovlev AU - A. A. Kobzev AU - S. V. Smirnov AU - I. V. Belyaeva AU - M. Yu. Arshinov AU - V. S. Yakovleva TI - Synchronous monitoring of $\gamma$, $\beta$-background and atmospheric precipitations in geophysical observatories of IMCES SB RAS and BEC IAO SB RAS JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 165 EP - 179 VL - 32 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a13/ LA - ru ID - VKAM_2020_32_3_a13 ER -
%0 Journal Article %A G. A. Yakovlev %A A. A. Kobzev %A S. V. Smirnov %A I. V. Belyaeva %A M. Yu. Arshinov %A V. S. Yakovleva %T Synchronous monitoring of $\gamma$, $\beta$-background and atmospheric precipitations in geophysical observatories of IMCES SB RAS and BEC IAO SB RAS %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 165-179 %V 32 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a13/ %G ru %F VKAM_2020_32_3_a13
G. A. Yakovlev; A. A. Kobzev; S. V. Smirnov; I. V. Belyaeva; M. Yu. Arshinov; V. S. Yakovleva. Synchronous monitoring of $\gamma$, $\beta$-background and atmospheric precipitations in geophysical observatories of IMCES SB RAS and BEC IAO SB RAS. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 165-179. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a13/
[1] Edinaya gosudarstvennaya avtomatizirovannaya sistema monitoringa radiatsionnoi obstanovki na territorii Rossiiskoi Federatsii (data obrascheniya ot 23.10.2019) http://egasmro.ru/ru
[2] EPA's Nationwide Environmental Radiation Monitoring (data obrascheniya ot 23.10.2019) https://www.epa.gov/radnet
[3] Measuring stations in Germany (data obrascheniya ot 23.10.2019) https://odlinfo.bfs.de/EN/index.html
[4] European Radiological Data Exchange Platform (data obrascheniya ot 23.10.2019) https://remon.jrc.ec.europa.eu/About
[5] Takeuchi N., Katase A. “Rainout-washout model for variation of environmental gamma-ray intensity by precipitation”, Journal of Nuclear Science and Technology, 1982, no. 19(5), 393-409
[6] EURADOS Report, Radiation Protection 106, 1999
[7] Lebedyte M., Butkus D., Morkūnas G., “Variations of the ambient dose equivalent rate in the ground level air”, Journal of environmental radioactivity, 2003, no. 64(1), 45-57 | DOI
[8] Beck H. L., “Gamma radiation from radon daughters in the atmosphere”, Journal of Geophysical Research, 1974, no. 79(15), 2215-2221 | DOI
[9] Datar G., Vichare G., Raghav A., Bhaskar A., Sinha A. K., Nair K. U., “Response of Gamma-Ray Spectrum During Ockhi Cyclone”, Front. Earth Sci., 8:15 (2020) https://doi.org/10.3389/feart.2020.00015
[10] Mercier J. F., Tracy B. L., d'Amours R., Chagnon F., Hoffman I., Korpach E. P., Ungar R. K., “Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass”, Journal of environmental radioactivity, 100(7) (2009), 527-533 | DOI
[11] Fujinami N., Watanabe T., Tsutsui T., “Looping variation of correlation between radon progeny concentration and dose rate in outdoor air”, In Radioactivity in the Environment, 7 (2005), 284-289 | DOI
[12] Hiemstra P. H., Pebesma E. J., Heuvelink G. B., Twenhöfel C. J., “Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands”, Science of the total environment, 409(1) (2010), 123-133 | DOI
[13] Burnett J. L., Croudace I. W., Warwick P. E., “Short-lived variations in the background gamma-radiation dose”, Journal of Radiological Protection, 30(3) (2010), 525 | DOI
[14] Liu H., Daisuke K., Motokiyo M., Hirao S., Moriizumi J., Yamazawa H. “On the characteristics of the wet deposition process using radon as a tracer gas”, Radiation protection dosimetry, 160(1-3) (2014), 83-86 | DOI
[15] Livesay R. J., Blessinger C. S., Guzzardo, T. F., Hausladen P. A., “Rain-induced increase in background radiation detected by Radiation Portal Monitors”, Journal of environmental radioactivity, 137 (2014), 137-141 | DOI
[16] Barbosa S. M., Miranda P., Azevedo E. B., “Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores)”, Journal of environmental radioactivity, 172 (2017), 218-231 | DOI
[17] Takeyasu M., Iida T., Tsujimoto T., Yamasaki K., Ogawa Y., “Concentrations and their ratio of 222Rn decay products in rainwater measured by gamma-ray spectrometry using a low-background Ge detector”, Journal of environmental radioactivity, 88(1) (2006), 74-89 | DOI
[18] Fujinami N., “Observational study of the scavenging of radon daughters by precipitation from the atmosphere”, Environment International, 22 (1996), 181-185 | DOI
[19] Yakovleva V. S., Nagorsky P. M., Cherepnev M. S., Kondratyeva A. G., Ryabkina K. S., “Effect of precipitation on the background levels of the atmospheric $\beta$-and $\gamma$-radiation”, Applied Radiation and Isotopes, 118 (2016), 190-195 | DOI
[20] Inomata Y., Chiba M., Igarashi Y., Aoyama M., Hirose K., “Seasonal and spatial variations of enhanced gamma ray dose rates derived from 222Rn progeny during precipitation in Japan”, Atmospheric Environment, 41(37) (2007), 8043-8057 | DOI
[21] Bossew P., Cinelli G., Hernández-Ceballos M., Cernohlawek N., Gruber V., Dehandschutter B., Menneson F., Bleher M., Stöhlker U., Hellmann I., Weiler F., Tollefsen T., Tognoli P. V., De Cort M., “Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate”, Journal of Environmental Radioactivity, 166 (2016), 296-308 | DOI
[22] Yamanishi H., Miyake H., “Separation of natural background by using correlation time-series data on radiation monitoring”, Journal of Nuclear Science and Technology, 40 (2003), 44-48 | DOI
[23] Keller P. E., Kouzes R. T., “Influence of Extraterrestrial Radiation on Radiation Portal Monitors”, Nuclear Science, IEEE Transactions on Nuclear Science, 56 (2008), 1575-1583 | DOI
[24] Knoll G., “Background and Detector Shielding”, Radiation Detection and Measurement, 2nd ed, John Wiley Sons, New York, 1989, 714-719
[25] Terry I. R., “The Skyshine Benchmark Experiment Revisited”, Radiation Protection Dosimetry, 115 (2005), 538-541 | DOI
[26] Brunke E-G. et al., “Cape Point GAW station 222Rn detector: factors affecting sensitivity and accuracy”, Atmospheric Environment, 36 (2002), 2257-2262 | DOI
[27] Reuveni Y., Yair Y., Price C., Steinitz G., “Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain”, Atmospheric Research, 196 (2017) | DOI
[28] Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A., “Results of optical precipitation gage field tests”, Atmospheric and Oceanic Optics, 31(5) (2018), 545-547 | DOI
[29] Yakovleva V. S., Nagorskiy P. M., Yakovlev G. A., Zelinskiy A. S., Pustovalov K. N., Smirnov S. V., Belyayeva I. V., “Predvaritel'nyye rezul'taty analiza variatsiy beta-fona prizemnoy atmosfery, obuslovlennykh livnevymi osadkami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 31:2 (2020), 139-149