Influence geometry of the pipeline at the stability of steam-water flow during the exploitation of a geo-power station
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 143-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cases of flow instability caused by the influence of gravitational forces in pipelines of steam-water mixture in geothermal fields are investigated. A new mathematical model of the steam-water flow was developed by authors, taking into account the gravitational effect and satisfying new requirements in the development of geothermal deposits with two-phase heat carrier transportation. The influence of the pipeline incline at the gravitational stability of the flow is shown. Recommendations on hydraulic calculation and construction of steamwater mixture pipelines are given.
Keywords: geothermal field, steam-water flow, mathematical model, gravitational instability, pipeline incline, trunk-line relief.
@article{VKAM_2020_32_3_a11,
     author = {A. N. Shulyupin and A. A. Chermoshentseva and N. N. Varlamova},
     title = {Influence geometry of the pipeline at the stability of steam-water flow during the exploitation of a geo-power station},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {143--153},
     year = {2020},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a11/}
}
TY  - JOUR
AU  - A. N. Shulyupin
AU  - A. A. Chermoshentseva
AU  - N. N. Varlamova
TI  - Influence geometry of the pipeline at the stability of steam-water flow during the exploitation of a geo-power station
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 143
EP  - 153
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a11/
LA  - ru
ID  - VKAM_2020_32_3_a11
ER  - 
%0 Journal Article
%A A. N. Shulyupin
%A A. A. Chermoshentseva
%A N. N. Varlamova
%T Influence geometry of the pipeline at the stability of steam-water flow during the exploitation of a geo-power station
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 143-153
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a11/
%G ru
%F VKAM_2020_32_3_a11
A. N. Shulyupin; A. A. Chermoshentseva; N. N. Varlamova. Influence geometry of the pipeline at the stability of steam-water flow during the exploitation of a geo-power station. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 32 (2020) no. 3, pp. 143-153. http://geodesic.mathdoc.fr/item/VKAM_2020_32_3_a11/

[1] Norbeck J.H., McClure M.W., Horne R.N., “Field observations at the Fenton Hill enhanced geothermal system test site support mixed-mechanism stimulation”, Geothermics, 74 (2018), 135–149 | DOI

[2] Zhang J., Xie J., Liu X., “Numerical evaluation of heat extraction for EGS with tree-shaped wells”, International Journal of Heat and Mass Transfer, 134 (2019), 296–310 | DOI

[3] Renaud T., Verdin P., Falcone G., “Numerical simulation of a deep borehole heat exchanger in the Krafla geothermal system”, International Journal of Heat and Mass Transfer, 143 (2019) | DOI

[4] Iry S., Rafee R., “Transient numerical simulation of the coaxial borehole heat exchanger with the different diameters ratio”, Geothermics, 77 (2019), 158–165 | DOI

[5] Smith J.H., “Collection and transmission of geothermal fluids”, Geothermal energy: review of research and development, Earth sciences, UNESCO, Paris, 1973, 97–105

[6] Lee K.C., Jenks D.G., “Ohaaki geothermal steam transmission pipelines”, Proceedings 11-th New Zealand Geothermal Workshop, 1989, 25–30

[7] Rizaldy, Zarrouk S.J., “Pressure drop in large diameter geothermal two-phase pipelines”, Proceedings 38-th New Zealand Geothermal Workshop, 2016, 1–5

[8] Shulyupin A.N., Ustoychivost' rezhima raboty parovodyanoy skvazhiny, OOO Amurprint, Khabarovsk, 2018, 136 pp.

[9] Ruspini L.C., Marcel C.P., “Two-phase flow instabilities: a review”, International Journal of Heat and Mass Transfer, 71 (2014), 521–548 | DOI

[10] Liu F., Yang Z., Zhang B., Li T., “Study on Ledinegg instability of two-phase boiling flow with bifurcation analysis and experimental verification”, International Journal of Heat and Mass Transfer, 147 (2020)

[11] Shulyupin A.N., “Steam-water flow instability in geothermal wells”, International Journal of Heat and Mass Transfer, 105 (2017), 290–295 | DOI

[12] Shulyupin A.N., Chermoshentseva A.A., “The Collection of Mathematical Models of Well-4 for the Calculation of Flows in Steam-Water Geothermal Wells”, Mathematical Models and Computer Simulations, 9:1 (2017), 127–132 | Zbl

[13] Xu Y., Fang X., “Correlations of void fraction for two-phase refrigerant flow in pipes”, Applied Thermal Engineering, 64 (2014), 242–251 | DOI

[14] Dang Z., Yang Z., Yang X., Ishii M., “Experimental study on void fraction, pressure drop and flow regime analysis in a large ID piping system”, International Journal of Heat and Mass Transfer, 111 (2019), 31–41

[15] Shulyupin A.N., Chermoshentseva A.A., Varlamova N.N., “Novyye vyzovy pri osvoyenii mestorozhdeniy parogidroterm s transportirovkoy parovodyanoy smesi”, Gornyy Informatsionno Analiticheskiy Byulleten', 2019, no. 2, 43–49