Convolutional networks for segmentation of large vein images
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 117-128
Voir la notice de l'article provenant de la source Math-Net.Ru
The article presents the results of work on image segmentation individual images of magnetic resonance imaging of the retroperitoneal space. The issues of detection and segmentation of objects the main veins of retroperitoneal space based on the convolutional architecture of a neural network for semantic pixel segmentation are considered. An automatic, accurate and reliable method using the convolutional neural network U-Net for extracting vein vessels from MRI images is proposed. Deep network training with a large receptive field U-Net allows you to achieve significant results even with the presence of low-quality source data, on small training samples. The data expansion strategy seems to be an effective way to reduce the degree of retraining in the recognition of medical images — veins
Mots-clés :
convolutional architecture, image segmentation
Keywords: neural networks, medical data.
Keywords: neural networks, medical data.
@article{VKAM_2020_31_2_a7,
author = {A. A. Egorov and S. A. Lysenkova and K. V. Mazayshvili},
title = {Convolutional networks for segmentation of large vein images},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {117--128},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a7/}
}
TY - JOUR AU - A. A. Egorov AU - S. A. Lysenkova AU - K. V. Mazayshvili TI - Convolutional networks for segmentation of large vein images JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 117 EP - 128 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a7/ LA - ru ID - VKAM_2020_31_2_a7 ER -
%0 Journal Article %A A. A. Egorov %A S. A. Lysenkova %A K. V. Mazayshvili %T Convolutional networks for segmentation of large vein images %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 117-128 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a7/ %G ru %F VKAM_2020_31_2_a7
A. A. Egorov; S. A. Lysenkova; K. V. Mazayshvili. Convolutional networks for segmentation of large vein images. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 117-128. http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a7/