On some new estimates for integrals of the square function and analytic Bergman type classes in some domains in $C^n$
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 32-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

В работе приведены новые эквивалентные квазинормы для некоторых новых пространств типа Бергмана в полидиске и в ограниченных псевдовыпуклых областях. Подобные оценки установлены также для классов типа Харди в полидиске. Эти результаты обобщают некоторые известные одномерные неравенства для пространств типа Харди и классов типа Бергмана в единичном круге на случай полидиска и ограниченной псевдовыпуклой области. Оценки такого типа могут иметь также различные приложения. Пусть $D$ ограниченная или неограниченная область в $C^n$ (ограниченная псевдовыпуклая или неограниченная трубчатая область над симметрическим конусом). Подходы, примененные в данной работе при доказательстве утверждений в полидиске могут быть, по-видимому, также использованы для доказательства подобных приведенных в данной работе оценок, но в полиобластях $D\times\cdots\times D$ существенно более общего типа, чем единичный полидиск
Keywords: polydisk, integral operators, analytic functions, analytic spaces, Hardy class, new Bergman space
Mots-clés : pseudoconvex domains.
@article{VKAM_2020_31_2_a2,
     author = {R. F. Shamoyan and E. B. Tomashevskaya},
     title = {On some new estimates for integrals of the square function and analytic {Bergman} type classes in some domains in $C^n$},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {32--55},
     year = {2020},
     volume = {31},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a2/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - E. B. Tomashevskaya
TI  - On some new estimates for integrals of the square function and analytic Bergman type classes in some domains in $C^n$
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 32
EP  - 55
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a2/
LA  - en
ID  - VKAM_2020_31_2_a2
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A E. B. Tomashevskaya
%T On some new estimates for integrals of the square function and analytic Bergman type classes in some domains in $C^n$
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 32-55
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a2/
%G en
%F VKAM_2020_31_2_a2
R. F. Shamoyan; E. B. Tomashevskaya. On some new estimates for integrals of the square function and analytic Bergman type classes in some domains in $C^n$. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 32-55. http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a2/

[1] Shamoyan R. F., “O prostranstvakh golomorfnykh v polikruge funktsiy tipa Lizorkina-Tribelya (On spaces of holomorphic functions in polydisk Lizorkin-Tribel type)”, Izv. NAN Arm., 2002, no. 3, 57–78 | MR | Zbl

[2] Shamoyan R. F., “On BMOA-type characteristics for one class of holomorphic functions in a disk”, Siberian Math. J., 44:3 (2003), 539–560 | DOI | MR | Zbl

[3] Shamoyan R. F., “On the quasinorm of holomorphic functions from classes Lizorkin-Tribel in subostov”, Symposium "Fourier Series and their applications" (in Russian), 2002, 54-55

[4] Cohn W., “A factorization theorem for the derivative of a function in $H^p$”, Proc. AMS., 127:2 (1999), 507-517 | DOI | MR

[5] Cohn W., “Bergman projections and operators on Hardy spaces”, Funct. Anal. J., 144 (1997), 1-19 | DOI | MR | Zbl

[6] Cohn W., Verbitsky I., “Factorization of Tent spaces and Hankel operators”, Journal of Functional Analysis, 175 (2000), 308-329 | DOI | MR | Zbl

[7] Coifman R., Meyer Y., Stein E., “Some new functional spaces and their application to harmonic analysis”, Journal of Functional Analysis, 62:2 (1985), 304-335 | DOI | MR | Zbl

[8] Djrbashian M. M., Shamoian F. A., Topics in the theory of $A^p_\alpha$ spaces, Teubner-Verl., Leipzig, 1988 | MR

[9] Dorronsoro J., “Mean Oscillation and Besov Spaces”, Canadian Mathematical Bulletin, 28:4 (1985), 474-480 | DOI | MR | Zbl

[10] Dyakonov K. M., “Besov spaces and outer functions”, Michigan Math. J., 45:1 (1998), 143-157 | DOI | MR | Zbl

[11] Dyakonov K. M., “Equivalent norms on Lipschitz-type spaces of holomorphic functions”, Acta Math., 178:143-167 (1997) | MR | Zbl

[12] Dynkin E. M. Free interpolation sets for Holder classes, Math. USSR-Sb., 37:1 (1980), 97–117 | DOI | MR | Zbl

[13] Fergusson S., Sadosky C., “Hankel operators and bounded mean oscillation on the polydisk”, Math. Anal. and Applic J., 2002, 241-267

[14] Jevtic M., Pavlovic M., Shamoyan R. F., “A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk”, Publ. Math. Debrecen, 74/1-2 (2009), 1-14 | MR

[15] Guliyev V. S., Lizorkin P. I., “Classes of holomorphic and harmonic functions in a polycircle in connection with their boundary values”, Research on the theory of differentiable functions of many variables and its applications, Proc. Steklov Inst. Math., v. 204, 1994, 117-135 | MR

[16] Gvaradze M., “Mnozhiteli odnogo klassa analiticheskikh funktsiy, opredelennykh na polidiske”, Tr. Tbil. Mat. In-ta (In Russian), 66 (1980), 15-21 | MR | Zbl

[17] Koosis J. B., Bounded analytic functions, Academic Press, Orlando, Fla, 1981, 356 p pp. | MR

[18] Krantz S., Ma D., “Bloch functions on strongly pseudoconvex donains”, Indiana University Mat. Journal, 37:1 (1988), 145-163 | DOI | MR | Zbl

[19] Marcinkciewicz J. Riewicz, Zygmund A., “A theorem of Lusin”, Duke Math. J., 4 (1938), 473–485 | DOI | MR

[20] Ortega J. M., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math, 109:3 (1994), 233-254 | MR | Zbl

[21] Rudin W., Function theory in the polydisk, Benjamin, New York, 1969 | MR

[22] Tribel Kh., Theoriya funktsionalnykh prostranstv (The theory of functional spaces), Moscow, 1986, 448 pp.

[23] Yoneda R., “Characterizations of Bloch space and Besov spaces by oscillations”, Hokkaido Math. J., 29:2 (2000), 409-451 | DOI | MR | Zbl

[24] Zhu K., Operator theory in function spaces, Springer, New York, 1990, 280 pp. | MR

[25] Zygmund A., Trigonometric series, v. I, II, Cambridge University Press, 1959 | MR | Zbl