The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 18-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the inverse problem for a mixed loaded equation with the Riemann-Liouville and Caputo operator in a rectangular domain. A criterion for the uniqueness and existence of a solution to the inverse problem is established. The solution of the problem is constructed in the form of the sum of a series of eigenfunctions of the corresponding one-dimensional spectral problem. It is proved that the unique solvability of the inverse problem substantially depends on the choice of the boundary of a rectangular region. An example is constructed in which the inverse problem with homogeneous conditions has a nontrivial solution. Estimates are obtained that allow substantiating the convergence of series in the class of regular solutions of this equation and the stability of the solution of the inverse problem from boundary data.
Keywords: loaded equation, Riemann-Liouville operator, inverse problem, uniqueness criterion and existence, small denominators, sustainability.
@article{VKAM_2020_31_2_a1,
     author = {U. Sh. Ubaydullayev},
     title = {The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {18--31},
     year = {2020},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/}
}
TY  - JOUR
AU  - U. Sh. Ubaydullayev
TI  - The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 18
EP  - 31
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/
LA  - ru
ID  - VKAM_2020_31_2_a1
ER  - 
%0 Journal Article
%A U. Sh. Ubaydullayev
%T The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 18-31
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/
%G ru
%F VKAM_2020_31_2_a1
U. Sh. Ubaydullayev. The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 18-31. http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/

[1] Lundstrom B. N., Higgs M. H., Spain W. J. Fairhall A. L., “Fractional differentiation by neocortical pyramidal neurons”, Nature Neuroscience, 11 (2018), 1335–1342 | DOI

[2] Scalas E., “The application of continuos-time random walks in finance and economics”, Physica, 362:2 (2006), 225–239 | DOI | MR

[3] Monje, Conception A. Fundamentals and Applications, Springer, 2010

[4] Dzharbashyan M. M., Nersesyan A. B., “Drobnyye proizvodnyye i zadachi Koshi dlya differentsial'nykh uravneniy drobnogo poryadka”, Izv.AN Arm SSR. Matematika, 1:3 (1968), 3–28

[5] Dzharbashyan M. M., Integral'nyye preobrazovaniya i prestavleniya funktsiy v kompleksnoy oblasti, M., 1966

[6] Gorenflo R., Luchko Y.F., Umarov S. R., “On the Cauchy and multipoint problems for partial pseudo-differential equations of fractional order”, Fract. Calc. and Appl. Anal., 2000, no. 3, 249–275 | MR | Zbl

[7] Kilbas A. A., Marzan S. A., “Cauchy problem for differential equation with Caputo derivative”, Fract. Cale. Appl. Anal., 3:7 (2004), 297–321 | MR | Zbl

[8] Pskhu A. V., Krayevyye zadachi dlya differentsial'nykh uravneniy s chastnymi proizvodnymi drobnogo i kontinual'nogo poryadka, Nal'chik, 2005

[9] Turmetov B., Nazarova K., “On Fractional Analogs of Dirichlet and Neumann Problems for the Laplace Equation”, Mediterranean Journal of Mathematics, 2019 https://doi.org/10.1007/s00009-019-1347-5 | MR

[10] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Doklady RAN, 413:1 (2007), 23-26 | Zbl

[11] Sabitov K. B., “Krayevaya zadacha dlya uravneniy smeshannogo tipa tret'yego poryadka v pryamougol'noy oblasti”, Differentsial'nyye uravneniya, 47:5 (2011), 705–713 | MR

[12] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918 https://doi.org/10.4213/mzm6577 | DOI

[13] Sabitov K.B., Martem’yanova, N.V., “The inverse problem for the Lavrent’ev–Bitsadze equation connected with the search of elements in the right-hand side”, Russ Math., 61 (2017), 36–48 https://doi.org/10.3103/S1066369X17020050

[14] Karimov E.Ṫ., Akhatov J. S., “A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative”, Electronic Journal of Differential Equations, 14 (2014), 1–6 | MR

[15] Islomov B. I., Ubaydullayev U. SH., “Krayevaya zadacha dlya uravneniya parabolo - giperbolicheskogo tipa s operatorom drobnogo poryadka v smysle Kaputo v pryamougol'noy oblasti”, Nauchnyy vestnik. Matematika, 2017, no. 5, 25–30

[16] Samko S. G., Kil'bas A. A., Marichev O. I., Integraly i proizvodnyye drobnogo poryadka i nekotoryye ikh prilozheniya, Nauka i Tekhnika, Minsk, 1987

[17] Moiseyev Ye. I., “O reshenii spektral'nym metodom odnoy nelokal'noy zadachi”, Differentsial'nyye uravneniya, 35:8 (1999), 1094–1100 | Zbl