@article{VKAM_2020_31_2_a1,
author = {U. Sh. Ubaydullayev},
title = {The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {18--31},
year = {2020},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/}
}
TY - JOUR AU - U. Sh. Ubaydullayev TI - The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 18 EP - 31 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/ LA - ru ID - VKAM_2020_31_2_a1 ER -
%0 Journal Article %A U. Sh. Ubaydullayev %T The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 18-31 %V 31 %N 2 %U http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/ %G ru %F VKAM_2020_31_2_a1
U. Sh. Ubaydullayev. The inverse problem for a mixed loaded equation with the riemann-liouville operator in a rectangular domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 31 (2020) no. 2, pp. 18-31. http://geodesic.mathdoc.fr/item/VKAM_2020_31_2_a1/
[1] Lundstrom B. N., Higgs M. H., Spain W. J. Fairhall A. L., “Fractional differentiation by neocortical pyramidal neurons”, Nature Neuroscience, 11 (2018), 1335–1342 | DOI
[2] Scalas E., “The application of continuos-time random walks in finance and economics”, Physica, 362:2 (2006), 225–239 | DOI | MR
[3] Monje, Conception A. Fundamentals and Applications, Springer, 2010
[4] Dzharbashyan M. M., Nersesyan A. B., “Drobnyye proizvodnyye i zadachi Koshi dlya differentsial'nykh uravneniy drobnogo poryadka”, Izv.AN Arm SSR. Matematika, 1:3 (1968), 3–28
[5] Dzharbashyan M. M., Integral'nyye preobrazovaniya i prestavleniya funktsiy v kompleksnoy oblasti, M., 1966
[6] Gorenflo R., Luchko Y.F., Umarov S. R., “On the Cauchy and multipoint problems for partial pseudo-differential equations of fractional order”, Fract. Calc. and Appl. Anal., 2000, no. 3, 249–275 | MR | Zbl
[7] Kilbas A. A., Marzan S. A., “Cauchy problem for differential equation with Caputo derivative”, Fract. Cale. Appl. Anal., 3:7 (2004), 297–321 | MR | Zbl
[8] Pskhu A. V., Krayevyye zadachi dlya differentsial'nykh uravneniy s chastnymi proizvodnymi drobnogo i kontinual'nogo poryadka, Nal'chik, 2005
[9] Turmetov B., Nazarova K., “On Fractional Analogs of Dirichlet and Neumann Problems for the Laplace Equation”, Mediterranean Journal of Mathematics, 2019 https://doi.org/10.1007/s00009-019-1347-5 | MR
[10] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Doklady RAN, 413:1 (2007), 23-26 | Zbl
[11] Sabitov K. B., “Krayevaya zadacha dlya uravneniy smeshannogo tipa tret'yego poryadka v pryamougol'noy oblasti”, Differentsial'nyye uravneniya, 47:5 (2011), 705–713 | MR
[12] Sabitov K. B., Safin E. M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918 https://doi.org/10.4213/mzm6577 | DOI
[13] Sabitov K.B., Martem’yanova, N.V., “The inverse problem for the Lavrent’ev–Bitsadze equation connected with the search of elements in the right-hand side”, Russ Math., 61 (2017), 36–48 https://doi.org/10.3103/S1066369X17020050
[14] Karimov E.Ṫ., Akhatov J. S., “A boundary problem with integral gluing condition for a parabolic-hyperbolic equation involving the Caputo fractional derivative”, Electronic Journal of Differential Equations, 14 (2014), 1–6 | MR
[15] Islomov B. I., Ubaydullayev U. SH., “Krayevaya zadacha dlya uravneniya parabolo - giperbolicheskogo tipa s operatorom drobnogo poryadka v smysle Kaputo v pryamougol'noy oblasti”, Nauchnyy vestnik. Matematika, 2017, no. 5, 25–30
[16] Samko S. G., Kil'bas A. A., Marichev O. I., Integraly i proizvodnyye drobnogo poryadka i nekotoryye ikh prilozheniya, Nauka i Tekhnika, Minsk, 1987
[17] Moiseyev Ye. I., “O reshenii spektral'nym metodom odnoy nelokal'noy zadachi”, Differentsial'nyye uravneniya, 35:8 (1999), 1094–1100 | Zbl