Evaluation of the parameters of fractal porous media
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 87-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the results of a study of models of porous media based on stochastic fractals Perlin noise and gas cloud. in particular, it presents approaches to determining the structure of a porous space and its permeability. The article deals with evaluation of parameters of the porous media. Mechanisms of segmentation of areas of porous media are described. The results of modeling and calculations of the model porosity, fractal dimension, and the relationship of these indicators are presented. The possibilities of the developed Kernaliz software package for analyzing and segmenting two-dimensional sections, both matrices obtained by generating stochastic fractals and matrices of real porous media, are shown. It is shown that the fractal dimension of the created matrices and porous media is preserved for any cut-off scale and grid size of the fractals used to build models of porous media, as well as the fractal dimension of the matrices and porous media depends on the binary filtering parameter that forms the specified porosity by changing the ratio of the matrices, open and closed pores, to the total volume of the sample.
Keywords: stochastic fractal, porous media, Perlin noise
Mots-clés : fractal dimension, image segmentation.
@article{VKAM_2020_30_1_a6,
     author = {A. A. Egorov and T. V. Gavrilenko and D. A. Bykovskikh},
     title = {Evaluation of the parameters of fractal porous media},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {87--96},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a6/}
}
TY  - JOUR
AU  - A. A. Egorov
AU  - T. V. Gavrilenko
AU  - D. A. Bykovskikh
TI  - Evaluation of the parameters of fractal porous media
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 87
EP  - 96
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a6/
LA  - ru
ID  - VKAM_2020_30_1_a6
ER  - 
%0 Journal Article
%A A. A. Egorov
%A T. V. Gavrilenko
%A D. A. Bykovskikh
%T Evaluation of the parameters of fractal porous media
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 87-96
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a6/
%G ru
%F VKAM_2020_30_1_a6
A. A. Egorov; T. V. Gavrilenko; D. A. Bykovskikh. Evaluation of the parameters of fractal porous media. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a6/

[1] Ken Perlin, “Improving Noise”, SIGGRAPH '02 Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002, 681–682

[2] Yegorov A. A., “Trekhmernyy stokhasticheskiy fraktal gazovoye oblako”, Vestnik kibernetiki, 27:3 (2017), 47–52 | MR

[3] Yegorov A. A., Gavrilenko T. V., “Metodika analiza poristosti i pronitsayemosti kerna volnovym algoritmom”, Materialy III Vserossiyskoy nauchno-prakticheskoy konferentsii Sever Rossii: strategii i perspektivy razvitiya, 2017, 70–75

[4] Mandel'brot B., Fraktal'naya geometriya prirody, Institut komp'yuternykh issledovaniy, M., 2002, 656 pp.

[5] Kronover R. M., Fraktaly i khaos v dinamicheskikh sistemakh, Postmarket, M., 2000, 352 pp.

[6] Gelashvili D. B., i dr., Fraktaly i mul'tifraktaly v bioekologii : Monografiya, Izd-vo Nizhegorodskogo gosuniversiteta, Nizhniy Novgorod., 2013, 370 pp.

[7] Felzenszwalb P., Huttenlocher D., “Efficient Graph-Based Image Segmentation”, International Journal of Computer Vision, 59:2 (2004), 167–181 | DOI