On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 42-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under certain integral condition which vanishes in onefunctional case we provide new sharp decomposition theorems for multifunctional Herz and Bergman spaces in the unit ball and pseudoconvex domains expanding known results from the unit ball. Our theorems extend also in various directions some known theorems on atomic decompositions of onefunctional Bergman spaces in the unit ball and in bounded pseudoconvex domains.
Keywords: unit ball, analytic functions, Bergman spaces
Mots-clés : pseudoconvex domains, Herz spaces.
@article{VKAM_2020_30_1_a3,
     author = {R. F. Shamoyan and E. B. Tomashevskaya},
     title = {On some new decomposition theorems in multifunctional {Herz} and {Bergman} analytic function spaces in bounded pseudoconvex domains},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {42--58},
     year = {2020},
     volume = {30},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a3/}
}
TY  - JOUR
AU  - R. F. Shamoyan
AU  - E. B. Tomashevskaya
TI  - On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 42
EP  - 58
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a3/
LA  - en
ID  - VKAM_2020_30_1_a3
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%A E. B. Tomashevskaya
%T On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 42-58
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a3/
%G en
%F VKAM_2020_30_1_a3
R. F. Shamoyan; E. B. Tomashevskaya. On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 42-58. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a3/

[1] Jevtic M., Pavlovic M., Shamoyan R. F., “A note on diagonal mapping theorem in spaces of analytic functions in the unit polydisk”, Publ. Math. Debrecen, 74:1-2 (2009), 1-14 | MR

[2] Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal Funct. Anal., 2012, no. 263(11), 3449–3491 | DOI | MR

[3] Zhu K., Spaces of holomorphic functions in the unit ball, Springer-Verlag, New York, 2005, 226 pp. | MR

[4] Triebel H., Theory of Function Spaces III, Modern Birkhauser, Basel, 2006 | MR

[5] Shamoyan R. F., “Arsenovic M. On distance estimates and atomic decomposition in spaces of analytic functions in strictly pseudoconvex domains”, Bulletin of Korean Mathematical Society, 52:1 (2015), 85-103 | DOI | MR

[6] Shamoyan R. F. Maksakov S. P., “On some sharp theorems on distance function in Hardy type, Bergman type and Herz type analytic classes”, Vestnik KRAUNC. Fiz.-mat. nauki, 2017, no. 19(3), 25-49 | MR

[7] Shamoyan R. F., Kurilenko S. M., “On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in $C^n$”, Issues of analysis, 4:1 (2015), 73–94 | DOI | MR

[8] Shamoyan R. F., Kurilenko S. M., “On Extremal problems in tubular domains”, Issues of Analysis, 2013, no. 3(21), 44–65 | MR

[9] Ortega J. M., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math, 109:3 (1994), 233-254 | MR

[10] Ortega J. M., Fabrega J., “Hardy’s inequality and embeddings in holomorphic Triebel-Lizorkin spaces”, Illinois Journal Math., 1999, no. 43, 733–751 | DOI | MR