A boundary value problem with an offset for a model equation of mixed type in an unbounded domain
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 31-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, for a mixed type equation in an unbounded region, the elliptical part of which is a horizontal strip, we study the problem with a shift on the characteristics of different families. The uniqueness of the solution of the problem is proved by the method of energy integrals, and the existence of a solution of the problem by the method of Green functions and the method of integral equations.
Keywords: bias problem, mixed type equation, unlimited domain, Green's function method, integral equation method, energy integral method.
@article{VKAM_2020_30_1_a2,
     author = {R. T. Zunnunov and J. A. Tolibjonov},
     title = {A boundary value problem with an offset for a model equation of mixed type in an unbounded domain},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {31--41},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a2/}
}
TY  - JOUR
AU  - R. T. Zunnunov
AU  - J. A. Tolibjonov
TI  - A boundary value problem with an offset for a model equation of mixed type in an unbounded domain
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 31
EP  - 41
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a2/
LA  - ru
ID  - VKAM_2020_30_1_a2
ER  - 
%0 Journal Article
%A R. T. Zunnunov
%A J. A. Tolibjonov
%T A boundary value problem with an offset for a model equation of mixed type in an unbounded domain
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 31-41
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a2/
%G ru
%F VKAM_2020_30_1_a2
R. T. Zunnunov; J. A. Tolibjonov. A boundary value problem with an offset for a model equation of mixed type in an unbounded domain. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 31-41. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a2/

[1] Nakhushev A. M., Zadachi so smeshcheniyem dlya uravneniy v chastnykh proizvodnykh, Nauka,, M., 2006, 287 pp.

[2] Smirnov M. M., Uravneniya smeshannogo tipa, Vysshaya shkola, M., 1985, 304 pp. | MR

[3] Nakhushev A. M., Uravneniya matematicheskoy biologii, Vysshaya shkola, M., 1995, 301 pp.

[4] Nakhushev A. M., “Ob odnom priblizhennom metode resheniya krayevykh zadach dlya differentsial'nykh uravneniy i yego prilozheniya k dinamike pochvennoy vlagi i gruntovykh vod”, Differentsial'nyye uravneniya, 17:1 (1982), 72-81 | MR

[5] Nakhushev A. M., “Nagruzhennyye uravneniya i ikh prilozheniya”, Differentsial'nyye uravneniya, 19:1 (1983), 86-94 | MR | Zbl

[6] Nakhushev A. M., “O nelokal'nykh krayevykh zadachakh so smeshcheniyem i ikh svyazi s nagruzhennymi uravneniyami”, Differentsial'nyye uravneniya, 21:1 (1985), 92-101 | MR | Zbl

[7] Ovsyannikov L. V., “O dvizhenii klinovidnogo profilya so skorost'yu zvuka”, Trudy LKVVIA, 1950, no. 33, 25-51

[8] Salakhitdinov M. S., Khasanov A., “Krayevyye zadachi so smeshcheniyem dlya uravneniya”, Differentsial'nyye uravneniya i ikh prilozheniya, FAN, Tashkent, 1979, 14-25

[9] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957, 440 pp.

[10] Salakhitdinov M. S., Urinov A. K., Krayevyye zadachi dlya uravneniy smeshannogo tipa so spektral'nym parametrom, FAN, Tashkent, 1997, 168 pp. | MR

[11] Kuznetsov M. S., Spetsial'nyye funktsii, Vysshaya shkola, M., 1965, 424 pp.