Solvability of a non--local problem for a third---order equation with the heat operator in the main par
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 20-30

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we considered the solvability of a nonlocal problem with integral condition for a thirdorder equation with head operatot in the main part. The existence and uniqueness of a regular solution to this problem are proved. The proof is based on reducing a non-local problem to the mixed problem for a loaded heat equation
Keywords: boundary–value problem, non–local problem, Green's function, Volterra integral equation.
Mots-clés : non–local condition, parabolic equation
@article{VKAM_2020_30_1_a1,
     author = {O. S. Zikirov and M. M. Sagdullayeva},
     title = {Solvability of a non--local problem for a third---order equation with the heat operator in the main par},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {20--30},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/}
}
TY  - JOUR
AU  - O. S. Zikirov
AU  - M. M. Sagdullayeva
TI  - Solvability of a non--local problem for a third---order equation with the heat operator in the main par
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 20
EP  - 30
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/
LA  - ru
ID  - VKAM_2020_30_1_a1
ER  - 
%0 Journal Article
%A O. S. Zikirov
%A M. M. Sagdullayeva
%T Solvability of a non--local problem for a third---order equation with the heat operator in the main par
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 20-30
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/
%G ru
%F VKAM_2020_30_1_a1
O. S. Zikirov; M. M. Sagdullayeva. Solvability of a non--local problem for a third---order equation with the heat operator in the main par. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/