Mots-clés : non–local condition, parabolic equation
@article{VKAM_2020_30_1_a1,
author = {O. S. Zikirov and M. M. Sagdullayeva},
title = {Solvability of a non{\textendash}local problem for a third{\textemdash}order equation with the heat operator in the main par},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {20--30},
year = {2020},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/}
}
TY - JOUR AU - O. S. Zikirov AU - M. M. Sagdullayeva TI - Solvability of a non–local problem for a third—order equation with the heat operator in the main par JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 20 EP - 30 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/ LA - ru ID - VKAM_2020_30_1_a1 ER -
%0 Journal Article %A O. S. Zikirov %A M. M. Sagdullayeva %T Solvability of a non–local problem for a third—order equation with the heat operator in the main par %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 20-30 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/ %G ru %F VKAM_2020_30_1_a1
O. S. Zikirov; M. M. Sagdullayeva. Solvability of a non–local problem for a third—order equation with the heat operator in the main par. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/
[1] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303 | Zbl
[2] Dzektser E. S., “Equation of motion of underground water with a free surface in multilayer media”, Soviet Physics Doklady, 20:3 (1975) | Zbl
[3] Chudnovsky A. F., Thermophysics of the soil, Nauka, Moscow, 1976, 352 pp.
[4] Golovanchikov A. B., Simonova I. E., Simonov B. V.,, “The solution of diffusion problem with integral boundary condition”, Fundam. Prikl. Mat., 7:2 (2001), 339–349 | MR | Zbl
[5] Cannon J.R. J., “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21:2 (1963), 155 – 160 | DOI | MR
[6] Kamynin L. I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, Zh. Vychisl. Mat. Mat. Fiz., 4:6 (1964), 33–59
[7] Ionkin N. I., “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 | MR | Zbl
[8] Ionkin N. I., Moiseev E. I., “A problem for a heat equation with two-point boundary conditions”, Differ. Uravn., 15:7 (1979), 1284–1295 | MR | Zbl
[9] Samarskii A. A., “Some problems of the theory of differential equations”, Differ. Uravn., 16:11 (1980), 1925–1935 | MR
[10] Yurchuk N. J., “A mixed problem with an integral condition for some parabolic equations”, Differ. Uravn, 22:12 (1986), 2117–2126 | MR | Zbl
[11] Kozhanov A. I. , “A time-nonlocal boundary value problem for linear parabolic equations”, Sib. Zh. Ind. Mat., 7:1 (2004), 51–60 | Zbl
[12] Dzhuraev T. D., Popelek Ya., “Classification and reduction to canonical form of third-order partial differential equations”, Differ. Equ., 27:10 (1991), 1225–1235 | MR
[13] Kozhanov A. I., “On a nonlocal boundary value problem with variable coefficients for the heat equation and the Aller equation”, Differ. Equ., 40:6 (2004), 815–826 | MR | Zbl
[14] Kozhanov A. I., Popov N. S., “On solvability to nonlocal boundary value problems for pseudoparabolic equations”, J. Math. Sci., 186:3 (2012), 438–452 | Zbl
[15] Nakhushev A. M., “Equations of mathematical biology”, Vysshaia shkola, 1995, 301 pp.
[16] Орынбасаров М. О., “Solution of a mixed problem for a third–order equation of composite type in a half-band”, Izv. NAN RK, Ser. Phis.–math., 2009, no. 1, 3-8
[17] Dzhuraev T. D., “Boundary value problems for the equations of mixed and mixed-composite types”, Fan Publ., Tashkent, 1979, 120 pp.