Solvability of a non--local problem for a third---order equation with the heat operator in the main par
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 20-30
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we considered the solvability of a nonlocal problem with integral condition for a thirdorder equation with head operatot in the main part. The existence and uniqueness of a regular solution to this problem are proved. The proof is based on reducing a non-local problem to the mixed problem for a loaded heat equation
Keywords:
boundary–value problem, non–local problem, Green's function, Volterra integral equation.
Mots-clés : non–local condition, parabolic equation
Mots-clés : non–local condition, parabolic equation
@article{VKAM_2020_30_1_a1, author = {O. S. Zikirov and M. M. Sagdullayeva}, title = {Solvability of a non--local problem for a third---order equation with the heat operator in the main par}, journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki}, pages = {20--30}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/} }
TY - JOUR AU - O. S. Zikirov AU - M. M. Sagdullayeva TI - Solvability of a non--local problem for a third---order equation with the heat operator in the main par JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2020 SP - 20 EP - 30 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/ LA - ru ID - VKAM_2020_30_1_a1 ER -
%0 Journal Article %A O. S. Zikirov %A M. M. Sagdullayeva %T Solvability of a non--local problem for a third---order equation with the heat operator in the main par %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2020 %P 20-30 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/ %G ru %F VKAM_2020_30_1_a1
O. S. Zikirov; M. M. Sagdullayeva. Solvability of a non--local problem for a third---order equation with the heat operator in the main par. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 20-30. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a1/