Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 8-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-boundary value problem for a hyperbolic equation with the most general elliptic differential operator, defined on an arbitrary bounded domain, is considered. Uniqueness, existence and stability of the classical solution of the posed problem are proved by the classical Fourier method. Sufficient conditions for the initial function and for the right-hand side of the equation are indicated, under which the corresponding Fourier series converge absolutely and uniformly. The notion of a generalized solution is introduced and existence theorem is proved. Similar results are formulated for parabolic equations too.
Keywords: hyperbolic equation, initial-boundary value problems, Fourier method, uniqueness, stability, classical solution, generalized solution.
Mots-clés : existence
@article{VKAM_2020_30_1_a0,
     author = {R. R. Ashurov and A. T. Muhiddinova},
     title = {Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {8--19},
     year = {2020},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a0/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - A. T. Muhiddinova
TI  - Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2020
SP  - 8
EP  - 19
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a0/
LA  - ru
ID  - VKAM_2020_30_1_a0
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A A. T. Muhiddinova
%T Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2020
%P 8-19
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a0/
%G ru
%F VKAM_2020_30_1_a0
R. R. Ashurov; A. T. Muhiddinova. Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 30 (2020) no. 1, pp. 8-19. http://geodesic.mathdoc.fr/item/VKAM_2020_30_1_a0/

[1] Tikhonov A. N., Samarskiy A. A., Uravneniya matematicheskoy fiziki, Nauka, M., 1966, 724 pp. | MR

[2] Korenev B. G., Voprosy rascheta balok i plit na uprugom osnovanii, Stroyizdat, M., 1954, 232 pp.

[3] Sabitov K. B., “Kolebaniya balki s zadelannymi kontsami”, Vest. Sam. gos. tekhn. un-ta, Ser. Fiz.-mat. nauki, 19:2 (2015), 311-324 | DOI | Zbl

[4] Sabitov K. B., “K teorii nachal'no-krayevykh zadach dlya uravneniya sterzhney i balok”, Differentsial'nyye uravneniya, 53:1 (2017), 89-100 | DOI | Zbl

[5] Sabitov K. B., “Zadacha Koshi dlya uravneniya kolebaniya balki”, Differentsial'nyye uravneniya, 53:5 (2017), 665-671 | DOI | MR | Zbl

[6] Kasimov SH. G., Madrakhimov U. S., “Nachal'no-granichnaya zadacha dlya uravneniya kolebaniy balki v mnogomernom sluchaye”, Differentsial'nyye uravneniya, 55:10 (2019), 1379-1391 | DOI | Zbl

[7] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhizdat, M., 1953, 281 pp. | MR

[8] Il'in V. A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravneniy”, Uspekhi mat. nauk, 15:2 (1960), 97-154 | Zbl

[9] Agmon S., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure and Appl. Math., 15:2 (1962), 119-143 | DOI | MR

[10] Красносельский М. А., Забрейко П. П., Пустыльник Е. И., Соболевский П. С., Интегральные операторы в пространствах суммируемых функций, Наука, М., 1966, 499 pp. | MR

[11] “Drobnyye stepeni ellipticheskikh operatorov i izomorfizm klassov differentsiruyemykh funktsiy”, Differentsial'nyye uravneniya, 8:9 (1972), 1609-1626 | MR | Zbl

[12] Alimov SH. A., Ashurov R. R., Pulatov A. K., “Kratnyye ryady i integraly Fur'ye. Kommutativnyy garmonicheskiy analiz”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 42 (1989), 7-104 | Zbl