Method of noise detection in magnetic data
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 87-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of detection of noise in magnetic data based on wavelet transformation and threshold functions is considered. Efficiency is shown by the results of analysis of fluxgate magnetometer FGE-DTU measurements at Observatory Paratunka, Kamchatka, IKIR FEB RAS. The noise from natural sources such as earthquakes in Kamchatka region and from artificial sources such as the vertical sounding of ionosphere by the ionosonde near Observatory is considered. Detailed time-frequency structure of noise in 2 Hz records of Z and D components is investigated. To automation the method for considered examples of noise the informative scale levels of wavelet-transformation are determined and parameters of threshold functions appreciated.
Keywords: noise in magnetic data, wavelet transform, data analysis.
@article{VKAM_2019_29_4_a9,
     author = {S. Yu. Papsheva and O. V. Mandrikova and S. Yu. Khomutov},
     title = {Method of noise detection in magnetic data},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {87--97},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a9/}
}
TY  - JOUR
AU  - S. Yu. Papsheva
AU  - O. V. Mandrikova
AU  - S. Yu. Khomutov
TI  - Method of noise detection in magnetic data
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 87
EP  - 97
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a9/
LA  - ru
ID  - VKAM_2019_29_4_a9
ER  - 
%0 Journal Article
%A S. Yu. Papsheva
%A O. V. Mandrikova
%A S. Yu. Khomutov
%T Method of noise detection in magnetic data
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 87-97
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a9/
%G ru
%F VKAM_2019_29_4_a9
S. Yu. Papsheva; O. V. Mandrikova; S. Yu. Khomutov. Method of noise detection in magnetic data. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 87-97. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a9/

[1] Khomutov S. Y. et al., “Noise in raw data from magnetic observatories”, Geosci. Instrum. Method. Data Syst., 6:2 (2017), 329–343 | DOI

[2] Lewicki M. S., “A review of methods for spike sorting: the detection and classification of neural action potentials”, Network: Computation in Neural Systems, 9:4 (1998), R53–R78 | DOI | MR | Zbl

[3] Hulata E. et al., “Detection and sorting of neural spikes using wavelet packets”, Physical Review Letters, 85:21 (2000), 4637–4640 | DOI

[4] Pavlov A. N. et al., “Sorting of neural spikes: When wavelet based methods outperform principal component analysis”, Natural Computing, 6 (2007), 269–281 | DOI | MR | Zbl

[5] Soloviev A., Agayan S., Bogoutdinov S., “Estimation of geomagnetic activity using measure of anomalousness”, Annals of Geophysics, 59:6 (2016)

[6] Letelier J., Weber P., “Spike sorting based on discrete wavelet transform coefficients”, Journal of neuroscience methods, 101 (2000), 93–106 | DOI

[7] Quian Quiroqa R., Nadasdy Z., Ben-Shaul Y., “Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering”, Neural Computation, 16 (2004), 1661–1687 | DOI | Zbl

[8] Koronovskiy A.A. i dr., Veyvlety v neyrodinamike i neyrofiziologii, Fizmatlit, M., 2013, 272 pp., (in Russian)

[9] Zhizhikina Ye. A., Mandrikova O. V., Khomutov S. YU., “Algoritm vydeleniya tekhnogennykh pomekh v geomagnitnykh dannykh”, Vestnik KamchatGTU, 35 (2016), 21–26, (in Russian)

[10] Levin B. R., Teoreticheskiye osnovy statisticheskoy radiotekhniki. V trekh knigakh. Kniga vtoraya. Izd. 2-ye, pererab. i dopolnen., Sov. Radio, M., 1975, 392 pp., (in Russian)

[11] Dobeshi I., Desyat' lektsiy po veyvletam, NITS «Regulyarnaya i khaoticheskaya dinamika», Izhevsk, 2001, 464 pp., (in Russian)