A priori estimate for an equation with fractional derivatives with different origins
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 41-47
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.
Keywords:
Riemann-Liouville fractional derivative, Caputo fractional derivative, boundary value problem, a priori estimate.
@article{VKAM_2019_29_4_a4,
author = {Liana M. \`Eneeva},
title = {A priori estimate for an equation with fractional derivatives with different origins},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {41--47},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/}
}
TY - JOUR AU - Liana M. Èneeva TI - A priori estimate for an equation with fractional derivatives with different origins JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 41 EP - 47 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/ LA - ru ID - VKAM_2019_29_4_a4 ER -
Liana M. Èneeva. A priori estimate for an equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 41-47. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/