A priori estimate for an equation with fractional derivatives with different origins
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 41-47

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an ordinary differential equation of fractional order with the composition of leftand right-sided fractional derivatives, and with variable potential. The considered equation is a model equation of motion in fractal media. We prove an a priori estimate for solutions of a mixed two-point boundary value problem for the equation under study.
Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative, boundary value problem, a priori estimate.
@article{VKAM_2019_29_4_a4,
     author = {Liana M. \`Eneeva},
     title = {A priori estimate for an equation with fractional derivatives with different origins},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {41--47},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/}
}
TY  - JOUR
AU  - Liana M. Èneeva
TI  - A priori estimate for an equation with fractional derivatives with different origins
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 41
EP  - 47
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/
LA  - ru
ID  - VKAM_2019_29_4_a4
ER  - 
%0 Journal Article
%A Liana M. Èneeva
%T A priori estimate for an equation with fractional derivatives with different origins
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 41-47
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/
%G ru
%F VKAM_2019_29_4_a4
Liana M. Èneeva. A priori estimate for an equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 41-47. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a4/