Keywords: nonlocal boundary value problem, equation with multiple characteristics, method of energy integrals, Caputo fractional derivative.
@article{VKAM_2019_29_4_a3,
author = {A. M. Shkhagapsoev},
title = {A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time {{\CYRS}aputo} derivative},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {35--40},
year = {2019},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/}
}
TY - JOUR AU - A. M. Shkhagapsoev TI - A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 35 EP - 40 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/ LA - ru ID - VKAM_2019_29_4_a3 ER -
%0 Journal Article %A A. M. Shkhagapsoev %T A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2019 %P 35-40 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/ %G ru %F VKAM_2019_29_4_a3
A. M. Shkhagapsoev. A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 35-40. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/
[1] Block H., “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, Ark. mat., astron., fys, 7:13 (1912), 1–34
[2] Del Vecchio E., “Sulle equazioni $Z_{xxx}-Z_{y}+\varphi_1(x,y)=0$, $Z_{xxx}-Z_{yy}+\varphi_1(x,y)=0$”, Mem. Real acad. cienc. Torino., 66 (1915), 1–41 | Zbl
[3] Del Vecchio E., “Sulle deux problems d’integration pour las equazions paraboliques $Z_{xxx}-Z_y=0$, $Z_{xxx}-Z_{yy}=0$”, Ark. mat., astron., fys., 11 (1916), 32–34
[4] Cattabriga L., “Potenzialli di linia edi domino per equation nom paraboliche in olue variabli a caracteristiche multiple”, Rendi del Som. Mat. della Univ. di Padova., 3 (1961), 1–45 | MR
[5] Cattabriga L., “Un problema al kontorno per una equazione di ordine dispary”, Analli della scuola normale superior di pisa fis e mat., 3:2 (1959), 163–169 | MR
[6] Shkhagapsoyev A. M., “Apriornyye otsenki resheniya krayevykh zadach dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Izvestiya KBNTS RAN, 2016, no. 6(74), 96–101, (in Russian)
[7] Shkhagapsoyev A. M., “Apriornaya otsenka zadachi Kattabriga dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2016, no. 1(12), 66–71, (in Russian) | MR | Zbl
[8] Shkhagapsoyev A. M., “Apriornaya otsenka resheniya analoga vtoroy krayevoy zadachi dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2017, no. 1(12), 66–71, (in Russian)
[9] Shkhagapsoyev A. M., “Apriornaya otsenka resheniya krayevoy zadachi s usloviyem Samarskogo dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2018, no. 6, 208–213, (in Russian) | MR
[10] Shkhagapsoyev A. M., “Apriornyye otsenki resheniya nelokal'nykh krayevykh zadach s usloviyem Samarskogo dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Izvestiya KBNTS RAN, 2018, no. 5, 89–99, (in Russian)
[11] Shkhagapsoyev A. M., “O yedinstvennosti i sushchestvovaniya obobshchennogo resheniya krayevoy zadachi s usloviyem samarskogo dlya uravneniya tret'yego poryadka so spektral'nym parametrom”, Yevraziyskiy soyuz uchenykh, 2018, no. 6(51), 43–47, (in Russian)
[12] Caputo M., “Elasticita e Dissipazione”, Bologna (in Italian), 1969
[13] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, M., 2003, 272 pp., (in Russian)