A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 35-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for a third-order parabolic equation with a fractional Caputo derivative is considered. A priori estimation of the solution of a generalized nonlocal boundary value problem for an equation with multiple characteristics with a fractional Caputo derivative in time is obtained by the method of energy inequalities.
Mots-clés : a priori estimation
Keywords: nonlocal boundary value problem, equation with multiple characteristics, method of energy integrals, Caputo fractional derivative.
@article{VKAM_2019_29_4_a3,
     author = {A. M. Shkhagapsoev},
     title = {A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time {{\CYRS}aputo} derivative},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {35--40},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/}
}
TY  - JOUR
AU  - A. M. Shkhagapsoev
TI  - A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 35
EP  - 40
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/
LA  - ru
ID  - VKAM_2019_29_4_a3
ER  - 
%0 Journal Article
%A A. M. Shkhagapsoev
%T A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 35-40
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/
%G ru
%F VKAM_2019_29_4_a3
A. M. Shkhagapsoev. A priori estimation of a generalized nonlocal boundary value problem for a thrid order equation with a fractional time Сaputo derivative. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 35-40. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a3/

[1] Block H., “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, Ark. mat., astron., fys, 7:13 (1912), 1–34

[2] Del Vecchio E., “Sulle equazioni $Z_{xxx}-Z_{y}+\varphi_1(x,y)=0$, $Z_{xxx}-Z_{yy}+\varphi_1(x,y)=0$”, Mem. Real acad. cienc. Torino., 66 (1915), 1–41 | Zbl

[3] Del Vecchio E., “Sulle deux problems d’integration pour las equazions paraboliques $Z_{xxx}-Z_y=0$, $Z_{xxx}-Z_{yy}=0$”, Ark. mat., astron., fys., 11 (1916), 32–34

[4] Cattabriga L., “Potenzialli di linia edi domino per equation nom paraboliche in olue variabli a caracteristiche multiple”, Rendi del Som. Mat. della Univ. di Padova., 3 (1961), 1–45 | MR

[5] Cattabriga L., “Un problema al kontorno per una equazione di ordine dispary”, Analli della scuola normale superior di pisa fis e mat., 3:2 (1959), 163–169 | MR

[6] Shkhagapsoyev A. M., “Apriornyye otsenki resheniya krayevykh zadach dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Izvestiya KBNTS RAN, 2016, no. 6(74), 96–101, (in Russian)

[7] Shkhagapsoyev A. M., “Apriornaya otsenka zadachi Kattabriga dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2016, no. 1(12), 66–71, (in Russian) | MR | Zbl

[8] Shkhagapsoyev A. M., “Apriornaya otsenka resheniya analoga vtoroy krayevoy zadachi dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2017, no. 1(12), 66–71, (in Russian)

[9] Shkhagapsoyev A. M., “Apriornaya otsenka resheniya krayevoy zadachi s usloviyem Samarskogo dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2018, no. 6, 208–213, (in Russian) | MR

[10] Shkhagapsoyev A. M., “Apriornyye otsenki resheniya nelokal'nykh krayevykh zadach s usloviyem Samarskogo dlya obobshchennogo uravneniya tret'yego poryadka s kratnymi kharakteristikami”, Izvestiya KBNTS RAN, 2018, no. 5, 89–99, (in Russian)

[11] Shkhagapsoyev A. M., “O yedinstvennosti i sushchestvovaniya obobshchennogo resheniya krayevoy zadachi s usloviyem samarskogo dlya uravneniya tret'yego poryadka so spektral'nym parametrom”, Yevraziyskiy soyuz uchenykh, 2018, no. 6(51), 43–47, (in Russian)

[12] Caputo M., “Elasticita e Dissipazione”, Bologna (in Italian), 1969

[13] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, M., 2003, 272 pp., (in Russian)