Local displacement problem for equation of fractional diffusion
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 28-34
Voir la notice de l'article provenant de la source Math-Net.Ru
For the fractional diffusion equation, we study a nonlocal boundary value problem of the first kind. The problem nonlocality is manifested in the fact that a linear combination of the values of the desired function is specified in the boundary condition. The theorem on the existence and uniqueness of a solution to the problem is proved.
Keywords:
nonlocal boundary value problem, Riemann-Liouville fractional derivative, Wright type function.
Mots-clés : fractional diffusion equation
Mots-clés : fractional diffusion equation
@article{VKAM_2019_29_4_a2,
author = {F. M. Losanova},
title = {Local displacement problem for equation of fractional diffusion},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {28--34},
publisher = {mathdoc},
volume = {29},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a2/}
}
F. M. Losanova. Local displacement problem for equation of fractional diffusion. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 28-34. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a2/