To the theory of thermal conduction and conductivity of metal fractals
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 98-109

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is suggsted an analytical approach of the physical description of fractal metal structures. The calculatuions are based on using quasiclassical Boltzmann kinetic equation and formally introduced operations of fractional differentiation. As examples of its application, the thermal conduction coefficients and conductivity of the metal fractal are calculated. What is more, it is shown the main difference between physical properties of fractal objects and ordinary smooth samples
Keywords: uasiclassical kinetic equation, fractional differentiation, conductivity, thermal conduction.
Mots-clés : fractal
@article{VKAM_2019_29_4_a10,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {To the theory of thermal conduction and conductivity of metal fractals},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {98--109},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - To the theory of thermal conduction and conductivity of metal fractals
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 98
EP  - 109
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/
LA  - ru
ID  - VKAM_2019_29_4_a10
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T To the theory of thermal conduction and conductivity of metal fractals
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 98-109
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/
%G ru
%F VKAM_2019_29_4_a10
S. O. Gladkov; S. B. Bogdanova. To the theory of thermal conduction and conductivity of metal fractals. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 98-109. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/