To the theory of thermal conduction and conductivity of metal fractals
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 98-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, it is suggsted an analytical approach of the physical description of fractal metal structures. The calculatuions are based on using quasiclassical Boltzmann kinetic equation and formally introduced operations of fractional differentiation. As examples of its application, the thermal conduction coefficients and conductivity of the metal fractal are calculated. What is more, it is shown the main difference between physical properties of fractal objects and ordinary smooth samples
Keywords: uasiclassical kinetic equation, fractional differentiation, conductivity, thermal conduction.
Mots-clés : fractal
@article{VKAM_2019_29_4_a10,
     author = {S. O. Gladkov and S. B. Bogdanova},
     title = {To the theory of thermal conduction and conductivity of metal fractals},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {98--109},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/}
}
TY  - JOUR
AU  - S. O. Gladkov
AU  - S. B. Bogdanova
TI  - To the theory of thermal conduction and conductivity of metal fractals
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 98
EP  - 109
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/
LA  - ru
ID  - VKAM_2019_29_4_a10
ER  - 
%0 Journal Article
%A S. O. Gladkov
%A S. B. Bogdanova
%T To the theory of thermal conduction and conductivity of metal fractals
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 98-109
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/
%G ru
%F VKAM_2019_29_4_a10
S. O. Gladkov; S. B. Bogdanova. To the theory of thermal conduction and conductivity of metal fractals. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 98-109. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a10/

[1] Mandelbrot B., Fraktalnaya geometriya prirody, RKhD, Izhevsk, 2002, 665 pp.

[2] Mandel'brot B., Fraktal'naya geometriya prirody, RKHD, Izhevsk, 2002, 665 pp., (in Russian)

[3] Feder Ye., Fraktaly, Mir, Moskva, 1991, 254 pp., (in Russian) | MR

[4] Shreder M., Fraktaly, khaos, stepennyye zakony, RKHD, Izhevsk, 2001, 528 pp., (in Russian)

[5] Dubinova A.Ye., Fraktaly v prikladnoy fizike, VNIIEF, Arzamas-16, 1995, 216 pp., (in Russian)

[6] P'yetroneze L., Fraktaly v fizike, Trudy 6 mezhdunarodnogo simpoziuma po fraktalam v fizike (Triyest, Italiya, 9-12 iyulya 1985g), Mir, Moskva, 1988, 672 pp., (in Russian)

[7] Chen J. D.,Wilkinson D., “Pore – scale viscous fingering in porous media”, Phys. Rev. Lett., 55 (1985), 1892–1895 | DOI

[8] Schaefer D. W.,Martin J. E.,Wiltzius P., “Fractal geomenry of cooloidal agregates”, Phys. Rev. Lett., 52 (1984), 2371–2374 | DOI

[9] Uryson P. S., Trudy po topologii i drugim oblastyam matematiki, v. 1, Gostekhteoretizdat, M., 1951, 512 pp., (in Russian) | MR

[10] Vinogradova I. M., Matematicheskaya entsiklopediya, v. 3, Sovetskaya Entsiklopediya, M., 1982, 1184 pp., (in Russian)

[11] Gladkov S. O., “K teorii odnomernoy i kvaziodnomernoy teploprovodnosti”, ZHTF, 67:7 (1997), 8–12, (in Russian)

[12] Gladkov S. O.,Bogdanova S. B., “The heat-transfer theory for quasi-n-dimensional system”, Physica B: Journal of Condensed matter, 405 (2010), 1975–1977

[13] Gladkov S. O., Bogdanova S. B., “O prodol'noy magnitnoy vospriimchivosti fraktal'nykh ferrodielektrikov”, Izvestiya RAN. Seriya fizicheskaya, 75:10 (2011), 1418-1422, (in Russian) | Zbl

[14] Gladkov S. O., Bogdanova S. B., “K teorii prodol'noy magnitnoy vospriimchivosti kvazitrekhmernykh ferromagnitnykh dielektrikov”, Fizika tverdogo tela, 54:1 (2012), 70-73, (in Russian)

[15] Dzhrbashyan M. M., Integral'nyye preobrazovaniya i predstavleniya v kompleksnoy ploskosti, Nauka, Moskva, 1966, 672 pp., (in Russian)

[16] Letnikov A. V., Teoriya differentsirovaniya s proizvol'nym ukazatelem, Moskva, 1868, 96 pp., (in Russian)

[17] Zel'dovich YA. B., Sokolov D. D., “Fraktaly, podobiye, promezhutochnaya asimptotika”, UFN, 146:3 (1985), 493-506, (in Russian) | DOI | MR | Zbl

[18] Gladkov S. O., Bogdanova S. B., “K voprosu o drobnom differentsirovanii”, Vestnik Samarskogo universiteta. Yestestvennonauchnaya seriya, 24:3 (2018), 7-13, (in Russian) | MR | Zbl

[19] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[20] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnyye drobnogo poryadka i nekotoryye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp., (in Russian)

[21] Gladkov S. O., Bogdanova S. B., “K voprosu o magnitnoy vospriimchivosti fraktal'nykh ferromagnitnykh provolok”, Izvestiya vuzov. Fizika, 57:4 (2014), 44-47, (in Russian) | MR

[22] Gladkov S. O., Fizika kompozitov: termodinamicheskiye i dissipativnyye svoystva, Nauka, Moskva, 1999, 330 pp., (in Russian)

[23] Akhiyezer A. I., Bar'yakhtar V. G., Peletminskiy S. V., Spinovyye volny, Nauka, Moskva, 1967, 368 pp., (in Russian)

[24] Lifshits I. M., Azbel' M. YA., Kaganov M. I., Elektronnaya teoriya metallov, Nauka, Moskva, 1971, 450 pp., (in Russian)