Boundary control problem for one degenerate hiberbolic equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 19-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the boundary control problem for a degenerate second-order hyperbolic equation. Necessary and sufficient conditions are established for minimal time controllability over Cauchy data. Boundary controls are presented in an explicit analytical form.
Keywords: distributed system control, degenerate hyperbolic equations, equation characteristics, regular solution, boundary control problem.
Mots-clés : data Cauchy
@article{VKAM_2019_29_4_a1,
     author = {A. H. Attaev},
     title = {Boundary control problem for one degenerate hiberbolic equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {19--27},
     year = {2019},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a1/}
}
TY  - JOUR
AU  - A. H. Attaev
TI  - Boundary control problem for one degenerate hiberbolic equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 19
EP  - 27
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a1/
LA  - ru
ID  - VKAM_2019_29_4_a1
ER  - 
%0 Journal Article
%A A. H. Attaev
%T Boundary control problem for one degenerate hiberbolic equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 19-27
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a1/
%G ru
%F VKAM_2019_29_4_a1
A. H. Attaev. Boundary control problem for one degenerate hiberbolic equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 29 (2019) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/VKAM_2019_29_4_a1/

[1] Butkovskij A.H., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975, 568 pp., (in Russian)

[2] Butkovskij A.H., Teoriya optimal'nogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965, 474 pp., (in Russian)

[3] Lions ZH.L., Optimal'noe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 415 pp., (in Russian)

[4] Butkovskii A. G., Poltavskii L. N., “Optimal control of two-dimensional distributed oscillating system”, Avtomat. i Telemekh., 1996, no. 4, 32–41

[5] Butkovskii A. G., Poltavskii L. N., “Optimal control of wave processes”, Avtomat. i Telemekh., 1966, no. 9, 48–53 | MR

[6] Vasil'ev F. P., “On duality in linear problems of control and observation”, Differ. Equ., 11:31 (1995), 1893–1900 | MR | Zbl

[7] Il'in V.A., Tikhomirov V.V., “The wave equation with boundary control at two ends and the problem of the complete damping of a vibration process”, Differ. Equ., 35:5 (1999), 697–708, (in Russian) | MR | Zbl

[8] Il'in V.A., “Boundary Control of Oscillations at One Endpoint with the Other Endpoint Fixed in Terms of a Finite-Energy Generalized Solution of the Wave Equation”, Differ. Equ., 36:12 (2000), 1832–1849, (in Russian) | MR | Zbl

[9] Il'in V.A., “A wave equation with a bounded control on two ends for an arbitrary time interval”, Differ. Equ., 35:11 (1999), 1532–1552, (in Russian) | MR | Zbl

[10] Il'in V.A. , Moiseev E.I., “Boundary control at one endpoint of a process described by a telegraph equation”, Dokl. Akad. Nauk, 387:5 (2002), 600–603, (in Russian) | MR | Zbl

[11] Abdukarimov M. F., Kritskov L. V., “Boundary control of the displacement at one end with the other end free for a process described by the telegraph equation with a variable coefficient”, Doklady Mathematics, 87:3 (2013), 351–353, (in Russian) | MR | Zbl

[12] Attaev A. Kh., “Boundary control by displacement at one and of string and the integral condition on the other”, International conference "Functional analysis in interdisciplinary applications (FAIA), 2017, Astana

[13] Attaev A.H, “Zadacha granichnogo kpravleniya dlya sushchestvenno nagruzhennogo uravneniya kolebaniya struny”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 13:1 (2011), 30–35, (in Russian)

[14] Smirnov M.M., Vyrozhdayushchiesya giperbolicheskie uravneniya, Vyshejshaya shkola, Minsk, 1977, 160 pp., (in Russian)