Simulation of the main stages of maintenance of unmanned aerial vehicles on the ground service platform
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The developed modelalgorithmic support for controlling the interaction of heterogeneous robotic systems during the servicing of unmanned aerial vehicles (UAVs) during group agricultural tasks is described. The main stages of UAV operation are presented when choosing a freetoservice groundbased robotic platform, exchanging energy and physical resources. Algorithms for changing UAV operating modes during servicing are considered. Recommended system AgrobotModeling is described, which provides a multicriteria assessment of the optimal number of UAVs and ground platforms needed to process a given area of a land.
Keywords: AgrobotModeling, maintenance of UAVs, ground-based robotic platform, AgrobotModeling, model-algorithmic support, optimal assessment.
@article{VKAM_2019_28_3_a5,
     author = {K. T. Ngo and V. V. Nguyen and A. L. Ronzhin},
     title = {Simulation of the main stages of maintenance of unmanned aerial vehicles on the ground service platform},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {47--57},
     year = {2019},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a5/}
}
TY  - JOUR
AU  - K. T. Ngo
AU  - V. V. Nguyen
AU  - A. L. Ronzhin
TI  - Simulation of the main stages of maintenance of unmanned aerial vehicles on the ground service platform
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 47
EP  - 57
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a5/
LA  - ru
ID  - VKAM_2019_28_3_a5
ER  - 
%0 Journal Article
%A K. T. Ngo
%A V. V. Nguyen
%A A. L. Ronzhin
%T Simulation of the main stages of maintenance of unmanned aerial vehicles on the ground service platform
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 47-57
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a5/
%G ru
%F VKAM_2019_28_3_a5
K. T. Ngo; V. V. Nguyen; A. L. Ronzhin. Simulation of the main stages of maintenance of unmanned aerial vehicles on the ground service platform. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 47-57. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a5/

[1] Andreev V. P., Pletenev P. F., “Metod informatsionnogo vzaimodeistviya dlya sistem raspredelennogo upravleniya v robotakh s modulnoi arkhitekturoi”, Trudy SPIIRAN, 57:2 (2018), 134–160 | DOI

[2] Lavrenov A. V., Suvorova A. V., Pashchenko A. Ye., Tulup'yev A. L., “Osobennosti obrabotki dannykh i znaniy ob epizodakh sotsial'no-znachimogo povedeniya v okrestnosti interv'yu”, Trudy SPIIRAN, 15:4 (2010), 246–262

[3] Vatamanyuk I. V., Panina G. YU., Ronzhin A. L., “Modelirovaniye trayektoriy peremeshcheniya robototekhnicheskikh kompleksov pri rekonfiguratsii prostranstvennogo polozheniya roya”, Robototekhnika i tekhnicheskaya kibernetika, 3:8 (2015), 52–-57

[4] Fetisov V. S., Akhmerov SH. R., “Sravnitel'naya kharakteristika avtomaticheskikh zaryadnykh i obmenno-zaryadnykh stantsiy dlya obsluzhivaniya malykh elektricheskikh bespilotnykh letatel'nykh apparatov”, Aviakosmicheskoye priborostroyeniye, 2 (2019), 3–-10

[5] Bashilov A. M., Korolev V. A., “Avtonomnyye bespilotnyye letatel'nyye apparaty v tochnykh sistemakh agroproizvodstva”, Vestnik agrarnoy nauki Dona, 3:43 (2018), 76–-82

[6] Jeong Y., Kweon I. S., “Relative Pose Estimation for an Integrated UGV-UAV Robot System”, ICIRA 2013, v. I, LNAI, 8102, 625-–636

[7] Muskardin T., Balmer G., Persson L., Wlach S., Laiacker M., Ollero A., Kondak K., “A novel landing system to increase payload capacity and operational availability of high altitude long endurance UAV”, International Conference on Unmanned Aircraft Systems (ICUAS), 2016 | DOI

[8] Daly J. M., Ma Y., Waslander S. L., “Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays”, Autonomous Robots, 38 (2015), 179–-191 | DOI

[9] Kemper P. F., Suzuki K. A. O., Morrison J. R., “UAV Consumable Replenishment: Design Concepts for Automated Service Stations”, Journal of Intelligent and Robotic Systems, 61 (2011), 369–-397 | DOI

[10] Merkulov A. A., “Konstruktivno-tekhnologicheskaya skhema robotizirovannogo kompleksa dlya vneseniya rabochikh rastvorov”, Nauchnoye obespecheniye agropromyshlennogo kompleksa, Sbornik statey po materialam KHI Vserossiyskoy konferentsii molodykh uchenykh, posvyashchennoy 95-letiyu Kubanskogo GAU i 80-letiyu so dnya obrazovaniya Krasnodarskogo kraya, 2017, 402–403

[11] Chernyshev V. V., Briskin Ye. S., “Issledovaniye vzaimodeystviya shagayushchego dvizhitelya s ekologicheski ranimym pochvennym pokrovom”, Bezopasnost' zhiznedeyatel'nosti, 1 (2012), 34–-38

[12] Sierra N. Young, Erkan Kayacan, Joshua M. Peschel., “Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum”, Precision Agriculture, 20 (2019), 697–-722 | DOI

[13] Gindin S. I., Khomonenko A. D., Adadurov S. Ye., “Chislennyy raschet mnogokanal'noy sistemy massovogo obsluzhivaniya s rekurrentnym vkhodyashchim potokom i «razogrevom»”, Izvestiya PGUPS, 4 (2013), 92–101

[14] Ryzhikov Yu. I., Teoriya ocheredey i upravleniye zapasami, Piter, Sankt-Peterburg, 2001, 384 pp.

[15] Khomonenko A. D., Chislennyye metody analiza sistem i setey massovogo obsluzhivaniya, MO SSSR, Sankt-Peterburg, 1991, 179 pp.