Lyapunov inequality for an equation with fractional derivatives with different origins
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 32-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an ordinary differential equation of fractional order with the composition of left and rightsided fractional derivatives, which is a model equation of motion in fractal media. We find a necessary condition for existence of nontrivial solution of homogeneous Dirichlet problem for the equation under consideration. The condition has the form of integral estimate for the potential and is an analog of Lyapunov inequality.
Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative, Dirichlet problem, Lyapunov inequality.
@article{VKAM_2019_28_3_a3,
     author = {L M. Eneeva},
     title = {Lyapunov inequality for an equation with fractional derivatives with different origins},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {32--39},
     year = {2019},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/}
}
TY  - JOUR
AU  - L M. Eneeva
TI  - Lyapunov inequality for an equation with fractional derivatives with different origins
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 32
EP  - 39
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/
LA  - ru
ID  - VKAM_2019_28_3_a3
ER  - 
%0 Journal Article
%A L M. Eneeva
%T Lyapunov inequality for an equation with fractional derivatives with different origins
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 32-39
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/
%G ru
%F VKAM_2019_28_3_a3
L M. Eneeva. Lyapunov inequality for an equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 32-39. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/

[1] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, Moskva, 2003, 272 pp.

[2] Rekhviashvili S. SH., “K opredeleniyu fizicheskogo smysla drobnogo integro-differentsirovaniya”, Nelineynyy mir, 5:4 (2007), 194–197

[3] Rekhviashvili S. SH., “Formalizm Lagranzha s drobnoy proizvodnoy v zadachakh mekhaniki”, Pis'ma v ZHTF, 30:2 (2004), 33–37

[4] Eneyeva L. M., “Krayevaya zadacha dlya differentsial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 3:2(11) (2015), 39–44

[5] Eneyeva L. M., “Otsenka pervogo sobstvennogo znacheniya zadachi Dirikhle dlya obyknovennogo differentsial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Izvestiya KBNTS RAN, 2017, no. 1(75), 34–40

[6] Eneyeva L. M., “O zadache Neymana dlya uravneniya s drobnymi proizvodnymi s razlichnymi nachalami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2018, no. 4(24), 61–65 | MR | Zbl

[7] Stanković B., “An equation with left and right fractional derivatives”, Publications de l’institut mathématique. Nouvelle série,, 80(94) (2006), 259–272 | DOI | MR | Zbl

[8] Atanackovic T. M., Stankovic B., “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 | MR | Zbl

[9] Torres C., “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142 | DOI

[10] Tokmagambetov N., Torebek B. T., “Fractional Analogue of Sturm-Liouville Operator”, Documenta Mathematica, 21 (2016), 1503–1514 | MR | Zbl

[11] Lyapunov A. M., “Ob odnom voprose, kasayushchemsya lineynykh differentsial'nykh uravneniy vtorogo poryadka s periodicheskimi koeffitsientami”, Soobshch. Khar'kov. matem. obshch. Vtoraya ser., 5 (1897), 190–254

[12] Brown R. C., Hinton D. B., “Lyapunov Inequalities and their Applications”, In: Survey on Classical Inequalities. Mathematics and Its Applications, v. 517, Springer, Dordrecht, 2000 | MR

[13] Ferreira R.A.C., “A Lyapunov-type inequality for a fractional boundary value problem”, Fract. Calc. Appl. Anal., 16:4 (2013), 978–984 | DOI | MR | Zbl