@article{VKAM_2019_28_3_a3,
author = {L M. Eneeva},
title = {Lyapunov inequality for an equation with fractional derivatives with different origins},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {32--39},
year = {2019},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/}
}
TY - JOUR AU - L M. Eneeva TI - Lyapunov inequality for an equation with fractional derivatives with different origins JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 32 EP - 39 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/ LA - ru ID - VKAM_2019_28_3_a3 ER -
L M. Eneeva. Lyapunov inequality for an equation with fractional derivatives with different origins. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 32-39. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a3/
[1] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, Moskva, 2003, 272 pp.
[2] Rekhviashvili S. SH., “K opredeleniyu fizicheskogo smysla drobnogo integro-differentsirovaniya”, Nelineynyy mir, 5:4 (2007), 194–197
[3] Rekhviashvili S. SH., “Formalizm Lagranzha s drobnoy proizvodnoy v zadachakh mekhaniki”, Pis'ma v ZHTF, 30:2 (2004), 33–37
[4] Eneyeva L. M., “Krayevaya zadacha dlya differentsial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 3:2(11) (2015), 39–44
[5] Eneyeva L. M., “Otsenka pervogo sobstvennogo znacheniya zadachi Dirikhle dlya obyknovennogo differentsial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Izvestiya KBNTS RAN, 2017, no. 1(75), 34–40
[6] Eneyeva L. M., “O zadache Neymana dlya uravneniya s drobnymi proizvodnymi s razlichnymi nachalami”, Vestnik KRAUNTS. Fiz.-mat. nauki, 2018, no. 4(24), 61–65 | MR | Zbl
[7] Stanković B., “An equation with left and right fractional derivatives”, Publications de l’institut mathématique. Nouvelle série,, 80(94) (2006), 259–272 | DOI | MR | Zbl
[8] Atanackovic T. M., Stankovic B., “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 | MR | Zbl
[9] Torres C., “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142 | DOI
[10] Tokmagambetov N., Torebek B. T., “Fractional Analogue of Sturm-Liouville Operator”, Documenta Mathematica, 21 (2016), 1503–1514 | MR | Zbl
[11] Lyapunov A. M., “Ob odnom voprose, kasayushchemsya lineynykh differentsial'nykh uravneniy vtorogo poryadka s periodicheskimi koeffitsientami”, Soobshch. Khar'kov. matem. obshch. Vtoraya ser., 5 (1897), 190–254
[12] Brown R. C., Hinton D. B., “Lyapunov Inequalities and their Applications”, In: Survey on Classical Inequalities. Mathematics and Its Applications, v. 517, Springer, Dordrecht, 2000 | MR
[13] Ferreira R.A.C., “A Lyapunov-type inequality for a fractional boundary value problem”, Fract. Calc. Appl. Anal., 16:4 (2013), 978–984 | DOI | MR | Zbl