The boundary value problem for third order equation of parabolic–hyperbolic type
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 26-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the boundary value problem for third order equation of parabolic-hyperbolic type. The existence and uniqueness theorem of a regular solution is proved. The solution to the problem under study was found explicitly.
Keywords: equation of parabolic-hyperbolic type, Tricomi method.
Mots-clés : Hallaire equation
@article{VKAM_2019_28_3_a2,
     author = {R. Kh. Makaova},
     title = {The boundary value problem for third order equation of parabolic{\textendash}hyperbolic type},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {26--31},
     year = {2019},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a2/}
}
TY  - JOUR
AU  - R. Kh. Makaova
TI  - The boundary value problem for third order equation of parabolic–hyperbolic type
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 26
EP  - 31
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a2/
LA  - ru
ID  - VKAM_2019_28_3_a2
ER  - 
%0 Journal Article
%A R. Kh. Makaova
%T The boundary value problem for third order equation of parabolic–hyperbolic type
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 26-31
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a2/
%G ru
%F VKAM_2019_28_3_a2
R. Kh. Makaova. The boundary value problem for third order equation of parabolic–hyperbolic type. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 26-31. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a2/

[1] Hallaire M., L'eau et la productions vegetable, 9, Institut National de la Recherche Agronomique, 1964

[2] Dzhuraev T. D., Kraevye zadachi dlya uravnenij smeshannogo i smeshanno-sostavnogo tipov., Fan, Tashkent, 1979, 120 pp. (in Russian)

[3] Chudnovskij A.F., Teplofizika pochv, Nauka, M., 1976, 352 pp. (in Russian)

[4] Showalter R.E., Ting T.W., “Pseudoparabolic partial differential equations”, SIAM J. Math. Anal., 1:1 (1970), 1-26 | DOI | Zbl

[5] Yangarber V.A., “The mixed problem for a modified moisture-transfer equation”, Journal of Applied Mechanics and Technical Physics, 8:1 (1967), 62–64 | DOI

[6] Shkhanukov M. Kh., “Some boundary value problems for a third-order equation that arise in the modeling of the filtration of a fluid in porous media”, Differential Equations, 18:4 (1982), 689–699 | Zbl

[7] Nahushev A. M., Uravneniya matematicheskoj biologii, Vysshaya shkola, M., 1995, 301 pp. (in Russian)

[8] Hubiev K.U., “O matematicheskoj modeli uravneniya Allera”, Vestnik KRAUNC. Fiz.-mat. nauki, 4-1:16 (2016), 56–65 (in Russian) | Zbl

[9] Makaova R.H., “Pervaya kraevaya zadacha v nelokal'noj postanovke dlya obobshchennogo uravneniya Allera s drobnoj proizvodnoj Rimana - Liuvillya”, Vestnik AGU. Seriya 4: Estestvenno-matematicheskie i tekhnicheskie nauki, 4:211 (2017), 36–41 (in Russian)

[10] Makaova R.H., “Vtoraya kraevaya zadacha dlya obobshchennogo uravneniya Allera s drobnoj proizvodnoj Rimana–Liuvillya”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 17:3 (2015), 35–38 (in Russian)

[11] Makaova R.H., “Pervaya kraevaya zadacha dlya neodnorodnogo uravneniya Allera”, Vestnik KRAUNC. Fiz.-Mat. nauki., 4-1:16 (2016), 45–49 (in Russian) | Zbl

[12] Tihonov A. N., Samarskij A. A., Uravneniya matematicheskoj fiziki, Nauka, M., 1977, 736 pp. (in Russian)