Boundary value problem with shift for a fractional order delay differential equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 16-25
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove existence and uniqueness theorem to a boundary value problem with shift for a fractional order ordinary delay differential equation. The solution of the problem is written out in terms of the Green function. We find an explicit representation for solvability condition and show that it may only be violated a finite number of times.
Keywords: Green function, delay differential equation, fractional differential equation, generalized Mittag-Leffler function, generalized Wright function.
@article{VKAM_2019_28_3_a1,
     author = {M. G. Mazhgikhova},
     title = {Boundary value problem with shift for a fractional order delay differential equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {16--25},
     year = {2019},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/}
}
TY  - JOUR
AU  - M. G. Mazhgikhova
TI  - Boundary value problem with shift for a fractional order delay differential equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 16
EP  - 25
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/
LA  - ru
ID  - VKAM_2019_28_3_a1
ER  - 
%0 Journal Article
%A M. G. Mazhgikhova
%T Boundary value problem with shift for a fractional order delay differential equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 16-25
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/
%G ru
%F VKAM_2019_28_3_a1
M. G. Mazhgikhova. Boundary value problem with shift for a fractional order delay differential equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 16-25. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp. (in Russian)

[2] Barrett J. H., “Differential equation of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | Zbl

[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadachi Koshi dlya differentsial'nykh uravneniy drobnogo poryadka”, Izv. AN ArmSSR, 3:1 (1968), 3–28 (in Russian)

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Factional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp.

[5] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp. (in Russian)

[6] Oldham K. B., Spanier J., The fractional calculus, Acad. press, N.-Y. L., 1974, 234 pp. | Zbl

[7] Bellman R. E., Cooke K. L., Differential-Difference Equations, Acad. Press, New York–London, 1963, 462 pp. | Zbl

[8] El'sgol'ts L. E., Vvedenie v teoriyu differentsial'nykh uravneniy s otklonyayushchimsya argumentom, Nauka, Moskva, 1971 (in Russian)

[9] Myshkis A. D., Lineynye differentsial'nye uravneniya s zapazdyvayushchim argumentom, Nauka, Moskva, 1972, 351 pp. (in Russian)

[10] Hale J. K, Lunel S. M. V., Introduction to Functional Differential Equations, Springer, New York–London, 1993, 449 pp. | Zbl

[11] Norkin S. B., “O resheniyakh lineynogo odnorodnogo differentsial'nogo uravneniya vtorogo poryadka s zapazdyvayushchim argumentom”, UMN, 14.1:85 (1959), 199–206 (in Russian) | Zbl

[12] Mazhgikhova M. G., “Initial and boundary value problems for ordinary differential equation of fractional order with delay”, Chelyabinsk Physical and Mathematical Journal, 3:1 (2018), 27–37 (in Russian)

[13] Mazhgikhova M. G., “Diarichlet problem for a fractional-order ordinary differential equation with retarded argument”, Differential equations, 54:2 (2018), 187–194 | DOI | Zbl

[14] Mazhgikhova M. G., “Zadacha Neymana dlya obyknovennogo differentsial'nogo uravneniya drobnogo poryadka s zapazdyvayushchim argumentom”, Izvestiya KBNTs RAN, 70:2 (2018), 15–20 (in Russian)

[15] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582 | DOI | Zbl

[16] Bogatyreva F. T., “Boundary value problem with shift for an ordinary differential equation with the Dzhrbashyan-Nersesyan fractional differentiation operator”, Differential equations, 50:2 (2014), 162–168 | DOI | Zbl

[17] Gadzova L. Kh., “Kraevaya zadacha so smeshcheniem dlya lineynogo obyknovennogo differentsial'nogo uravneniya s operatorom diskretno raspredelennogo differentsirovaniya”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, 2018, 25–30 (in Russian)

[18] Prabhakar T. R., “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | Zbl

[19] Shukla A. K., Prajapati J. C., “On a generalization of Mittag-Leffler function and its properties”, J. Math. Anal. Appl., 336 (2007), 797–811 | DOI | Zbl

[20] Wright E. M., “The asymptotic expansion of the generalized hypergeometric function”, J. London Math. Soc., 10 (1935), 286–293 | DOI

[21] Wright E. M., “The asymptotic expansion of the generalized hypergeometric function”, Proc. London Math. Soc., 46:2 (1940), 389–408 | DOI