@article{VKAM_2019_28_3_a1,
author = {M. G. Mazhgikhova},
title = {Boundary value problem with shift for a fractional order delay differential equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {16--25},
year = {2019},
volume = {28},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/}
}
TY - JOUR AU - M. G. Mazhgikhova TI - Boundary value problem with shift for a fractional order delay differential equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 16 EP - 25 VL - 28 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/ LA - ru ID - VKAM_2019_28_3_a1 ER -
M. G. Mazhgikhova. Boundary value problem with shift for a fractional order delay differential equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 16-25. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a1/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp. (in Russian)
[2] Barrett J. H., “Differential equation of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | Zbl
[3] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadachi Koshi dlya differentsial'nykh uravneniy drobnogo poryadka”, Izv. AN ArmSSR, 3:1 (1968), 3–28 (in Russian)
[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Factional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp.
[5] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp. (in Russian)
[6] Oldham K. B., Spanier J., The fractional calculus, Acad. press, N.-Y. L., 1974, 234 pp. | Zbl
[7] Bellman R. E., Cooke K. L., Differential-Difference Equations, Acad. Press, New York–London, 1963, 462 pp. | Zbl
[8] El'sgol'ts L. E., Vvedenie v teoriyu differentsial'nykh uravneniy s otklonyayushchimsya argumentom, Nauka, Moskva, 1971 (in Russian)
[9] Myshkis A. D., Lineynye differentsial'nye uravneniya s zapazdyvayushchim argumentom, Nauka, Moskva, 1972, 351 pp. (in Russian)
[10] Hale J. K, Lunel S. M. V., Introduction to Functional Differential Equations, Springer, New York–London, 1993, 449 pp. | Zbl
[11] Norkin S. B., “O resheniyakh lineynogo odnorodnogo differentsial'nogo uravneniya vtorogo poryadka s zapazdyvayushchim argumentom”, UMN, 14.1:85 (1959), 199–206 (in Russian) | Zbl
[12] Mazhgikhova M. G., “Initial and boundary value problems for ordinary differential equation of fractional order with delay”, Chelyabinsk Physical and Mathematical Journal, 3:1 (2018), 27–37 (in Russian)
[13] Mazhgikhova M. G., “Diarichlet problem for a fractional-order ordinary differential equation with retarded argument”, Differential equations, 54:2 (2018), 187–194 | DOI | Zbl
[14] Mazhgikhova M. G., “Zadacha Neymana dlya obyknovennogo differentsial'nogo uravneniya drobnogo poryadka s zapazdyvayushchim argumentom”, Izvestiya KBNTs RAN, 70:2 (2018), 15–20 (in Russian)
[15] Pskhu A. V., “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sbornik: Mathematics, 202:4 (2011), 571–582 | DOI | Zbl
[16] Bogatyreva F. T., “Boundary value problem with shift for an ordinary differential equation with the Dzhrbashyan-Nersesyan fractional differentiation operator”, Differential equations, 50:2 (2014), 162–168 | DOI | Zbl
[17] Gadzova L. Kh., “Kraevaya zadacha so smeshcheniem dlya lineynogo obyknovennogo differentsial'nogo uravneniya s operatorom diskretno raspredelennogo differentsirovaniya”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 149, 2018, 25–30 (in Russian)
[18] Prabhakar T. R., “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | Zbl
[19] Shukla A. K., Prajapati J. C., “On a generalization of Mittag-Leffler function and its properties”, J. Math. Anal. Appl., 336 (2007), 797–811 | DOI | Zbl
[20] Wright E. M., “The asymptotic expansion of the generalized hypergeometric function”, J. London Math. Soc., 10 (1935), 286–293 | DOI
[21] Wright E. M., “The asymptotic expansion of the generalized hypergeometric function”, Proc. London Math. Soc., 46:2 (1940), 389–408 | DOI