A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 6-15
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a boundary value problem for a model inhomogeneous mixed parabolic-hyperbolic type equation of third order is investigated. A theorem on uniqueness and the existence of a regular solution of the problem under investigation is proved. The solution of the investigated problem is written out in an explicit form.
Keywords:
mixed type equation, third-order equation with multiple characteristics, Tricomi method.
Mots-clés : Aller equation
Mots-clés : Aller equation
@article{VKAM_2019_28_3_a0,
author = {V. A. Vogahova and A. Kh. Balkizova},
title = {A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {6--15},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/}
}
TY - JOUR AU - V. A. Vogahova AU - A. Kh. Balkizova TI - A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 6 EP - 15 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/ LA - ru ID - VKAM_2019_28_3_a0 ER -
%0 Journal Article %A V. A. Vogahova %A A. Kh. Balkizova %T A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2019 %P 6-15 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/ %G ru %F VKAM_2019_28_3_a0
V. A. Vogahova; A. Kh. Balkizova. A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 6-15. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/