A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 6-15

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a boundary value problem for a model inhomogeneous mixed parabolic-hyperbolic type equation of third order is investigated. A theorem on uniqueness and the existence of a regular solution of the problem under investigation is proved. The solution of the investigated problem is written out in an explicit form.
Keywords: mixed type equation, third-order equation with multiple characteristics, Tricomi method.
Mots-clés : Aller equation
@article{VKAM_2019_28_3_a0,
     author = {V. A. Vogahova and A. Kh. Balkizova},
     title = {A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {6--15},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/}
}
TY  - JOUR
AU  - V. A. Vogahova
AU  - A. Kh. Balkizova
TI  - A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 6
EP  - 15
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/
LA  - ru
ID  - VKAM_2019_28_3_a0
ER  - 
%0 Journal Article
%A V. A. Vogahova
%A A. Kh. Balkizova
%T A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 6-15
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/
%G ru
%F VKAM_2019_28_3_a0
V. A. Vogahova; A. Kh. Balkizova. A boundary value problem with displacement for a model equation of a parabolic-hyperbolic type of the third order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 28 (2019) no. 3, pp. 6-15. http://geodesic.mathdoc.fr/item/VKAM_2019_28_3_a0/