@article{VKAM_2019_27_2_a3,
author = {E. R. Novikov{\cyra}},
title = {Study of the singular points of the fractional oscillator {Van} der {Pol-Duffing}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {47--54},
year = {2019},
volume = {27},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a3/}
}
E. R. Novikovа. Study of the singular points of the fractional oscillator Van der Pol-Duffing. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 27 (2019) no. 2, pp. 47-54. http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a3/
[1] Vronskiy A. P., “Yavleniye posledeystviya v tverdom tele”, AN SSSR. Prikladnaya matematika i mekhanika, 5:1 (1941), 31–56
[2] Rabotnov Yu. N., “Ravnovesiye uprugoy sredy s posledeystviyem”, AN SSSR. Prikladnaya matematika i mekhanika, 12:1 (1948), 53–62 | MR | Zbl
[3] Gerasimov A. N., “Obobshcheniye lineynykh zakonov deformatsii i ikh prilozheniye k zadacham vnutrennego treniya”, AN SSSR. Prikladnaya matematika i mekhanika, 12:3 (1948), 251-260 | Zbl
[4] Volterra V., “Sur les 'equations int'egro-diff'erentiellesetleurs applications”, Acta Mathematica, 35:1 (1912), 295-356 | DOI | MR | Zbl
[5] Nakhushev A. M., Drobnoye ischisleniye i yego primeneniye, Fizmatlit, M., 2003, 272 pp.
[6] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl
[7] Parovik R. I., Matematicheskoye modelirovaniye nelineynykh ereditarnykh ostsillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskiy, 2017, 135 pp.
[8] Novikova Ye. R, Parovik R. I., “Issledovaniye tochek pokoya ereditarnoy dinamicheskoy sistemy Van der Polya-Duffinga”, Vestnik KRAUNTS. Fiz.-mat. nauki, 26:1 (2019), 71-77 | DOI
[9] Lipko O. D., “Issledovaniye ustoychivosti tochek pokoya drobnogo ostsillyatora FittsKH'yu-Nagumo”, Vestnik KRAUNTS. Fiz.-mat. nauki, 26:1 (2019), 63-70 | DOI
[10] Caputo M., Elasticit`a e dissipazione, Bologna, Zanichelli, 1969, 150 pp.
[11] Tavazoei M. S., Haeri M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628-2637 | DOI | MR | Zbl