Study of the singular points of the fractional oscillator Van der Pol-Duffing
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 27 (2019) no. 2, pp. 47-54
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is conducted on the asymptotic stability of the rest points of the fractional oscillator Van der Pol-Duffing. The fractional van der Pol-Duffing oscillator is an oscillatory system of two differential equations with fractional order derivatives in the sense of Gerasimov–Caputo. The orders of fractional derivatives characterize the properties of the medium (memory effects) in which the oscillatory process takes place and can be the same (commensurate) or different (incommensurable). Using theorems for commensurable and incommensurable systems, the asymptotic stability of the rest points of the fractional van der Pol-Duffing oscillator is investigated with concrete examples. The results of the studies were confirmed by constructing the appropriate waveforms and phase trajectories.
Keywords:
Van der Pol's Duffing fractional oscillator, singular points, commensurate and incommensurate systems, asymptotic stability, oscillograms and phase trajectories.
@article{VKAM_2019_27_2_a3,
author = {E. R. Novikov{\cyra}},
title = {Study of the singular points of the fractional oscillator {Van} der {Pol-Duffing}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {47--54},
publisher = {mathdoc},
volume = {27},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a3/}
}
TY - JOUR AU - E. R. Novikovа TI - Study of the singular points of the fractional oscillator Van der Pol-Duffing JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 47 EP - 54 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a3/ LA - ru ID - VKAM_2019_27_2_a3 ER -
E. R. Novikovа. Study of the singular points of the fractional oscillator Van der Pol-Duffing. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 27 (2019) no. 2, pp. 47-54. http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a3/