On a generalized mathematical model of Malthus
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 27 (2019) no. 2, pp. 38-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the generalized Malthus equation describing a singlespecies population. Solved the Cauchy problem for cases $0 <\alpha<1$ and $1<\alpha<2$.
Keywords: generalized Malthus equation, Cauchy problem, fractional derivative, fractional integral, Mittag-Leffler function.
@article{VKAM_2019_27_2_a2,
     author = {F. M. Losanova and R. O. Kenetova},
     title = {On a generalized mathematical model of {Malthus}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {38--46},
     year = {2019},
     volume = {27},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a2/}
}
TY  - JOUR
AU  - F. M. Losanova
AU  - R. O. Kenetova
TI  - On a generalized mathematical model of Malthus
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 38
EP  - 46
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a2/
LA  - ru
ID  - VKAM_2019_27_2_a2
ER  - 
%0 Journal Article
%A F. M. Losanova
%A R. O. Kenetova
%T On a generalized mathematical model of Malthus
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 38-46
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a2/
%G ru
%F VKAM_2019_27_2_a2
F. M. Losanova; R. O. Kenetova. On a generalized mathematical model of Malthus. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 27 (2019) no. 2, pp. 38-46. http://geodesic.mathdoc.fr/item/VKAM_2019_27_2_a2/

[1] Malthus T. R., An Essay on the principe of population Johnson, London, 1788

[2] Gomperz B., “On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies”, Philosophical Transactions Royal Society (London), 115 (1825), 513-583 | DOI

[3] Verhulst P. F., “Notice sur la loi gue la population suit daus son accroissement”, Corresp. Math. et Phys., 10 (1938), 113–121

[4] Vol'tera V., Matematicheskaya teoriya bor'by za sushchestvovaniye, Nauka, M., 1976, 199 pp.

[5] Lotka A. J., Elements of physical biology, Williams and Wilkins, Baltimore, 1925, 495 pp. | Zbl

[6] Нахушев А. М., Уравнения математической биологии, Высш. шк., М., 1995, 301 pp.

[7] Dzhrbashyan M. M., Integral'nyye preobrazovaniya i predstavleniya funktsiy v kompleksnoy oblasti, Nauka, M., 1966, 670 pp.

[8] Nakhushev A. M., “Zadacha Shturma-Liuvillya dlya obyknovennogo differentsial'nogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, DAN SSSR, 234:2 (1977), 308–311 | MR | Zbl

[9] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i prozvodnyye drobnogo poryadka i nekotoryye ikh prilozheniya, Nauka i tehnika, Minsk, 1987, 687 pp.