Choosing the model of biological neural network for image segmentation of a bio-liquid facie
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 78-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the biological neural network models are analyzed with a purpose to solve the problems of segmentation and pattern recognition when applied to the bio-liquid facies obtained by the cuneiform dehydration method. The peculiarities of the facies’ patterns and the key steps of their digital processing are specified in the frame of the pattern recognition. Feasibility of neural network techniques for the different image data level digital processing is reviewed as well as for image segmentation. The real-life biological neural network architecture concept is described using the mechanisms of the electrical input-output membrane voltage and both induced and endogenic (spontaneous) activities of the neural clusters when spiking. The mechanism of spike initiation is described for metabotropic and ionotropic receptive clusters with the nature of environmental exciting impact specified. Also, the mathematical models of biological neural networks that comprise not only functional nonlinearities but the hysteretic ones are analyzed and the reasons are given for preference of the mathematical model with delay differential equations is chosen providing its applicability for modeling a single neuron and neural network as well.
Keywords: biological neural network, hysteresis, texture, image recognition.
Mots-clés : facie
@article{VKAM_2019_26_1_a7,
     author = {M. {\CYRE}. Semenov and T. Yu. Zablotskaya},
     title = {Choosing the model of biological neural network for image segmentation of a bio-liquid facie},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {78--93},
     year = {2019},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/}
}
TY  - JOUR
AU  - M. Е. Semenov
AU  - T. Yu. Zablotskaya
TI  - Choosing the model of biological neural network for image segmentation of a bio-liquid facie
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 78
EP  - 93
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/
LA  - en
ID  - VKAM_2019_26_1_a7
ER  - 
%0 Journal Article
%A M. Е. Semenov
%A T. Yu. Zablotskaya
%T Choosing the model of biological neural network for image segmentation of a bio-liquid facie
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 78-93
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/
%G en
%F VKAM_2019_26_1_a7
M. Е. Semenov; T. Yu. Zablotskaya. Choosing the model of biological neural network for image segmentation of a bio-liquid facie. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/

[1] Vorob'ev A. V., Martusevich A. K., Peretyagin S. P., Kristallogenez biologicheskih zhidkostej i substratov v ocenke sostoyaniya organizma [Crystallogenesis of biological fluids and substrates in the assessment of the state of the body], FGU 'NNIITO Rosmedtekhnologij', Nizhnij Novgorod, 2008, 384 pp. (in Russian)

[2] Rapis E. G., Belok i zhizn' (samosborka i simmetriya nanostruktur belka)[Protein and life (self-assembly and symmetry of protein nanostructures)], ZL. Milta-PKPTIT, Ierusalim–Moscow, 2002, 257 pp. (in Russian)

[3] Markevich V. Eh., Kirilenko E. A., Petrashenko V. A. , Zablotskaya T. Yu., Bilokon' M. A., “Metody klinovidnoj degidratacii biologicheskih zhidkostej [Methods wedge dehydration of biological fluids]”, Morphologia, 8:1 (2014), 113–117 (in Russian)

[4] Zablotskaya T. Yu., “Analiz osnovnyh processov i tipov struktur pri degidratacii biologicheskih zhidkostej [Analiz osnovnyh processov i tipov struktur pri degidratacii biologicheskih zhidkostej]”, Elektromekhanichnie i energozberegayuchie sistemi, 12:4 (2010), 92-95 (in Russian)

[5] Egmont-Petersen M., de Ridderb D., Handels H., “Image processing with neural networks - a review”, Pattern Recognition, 2002, no. 35, 2279–2301 | DOI | Zbl

[6] Wang L., Zhang K., Liu X., Long E., Jiang J., An Y., Zhang J., Liu Z., Lin Z., Li X., Chen J., Cao Q., Li J., Wu X., Wang D., Li W., Lin H., “Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images”, Sci. Rep., 2017, no. 7, 41545 | DOI

[7] Sridevi M., Mala C., “A Survey on Monochrome Image Segmentation Methods”, Procedia Technology, 2012, no. 6, 548–555 | DOI

[8] Foster B., Bagci U., Mansoor A., Xu Z., Mollura D. J., “A review on segmentation of positron emission tomography images”, Computers in Biology and Medicine, 50 (2014), 76–96 | DOI

[9] Schmidhuber J., “Deep learning in neural networks: An overview”, Neural Networks, 2015, no. 61, 85–117 | DOI

[10] Shen D., Wu G., Suk H., “Deep Learning in Medical Image Analysis”, Annu Rev Biomed Eng., 2017, no. 19, 221–248 | DOI

[11] Moeskops P, Viergever M. A., Mendrik A. M., de Vries L. S., Benders MJNL, Isgum I., “Automatic segmentation of MR brain images with a convolutional neural network”, IEEE Transactions on Medical Imaging, 2016, no. 35, 1252–1261 | DOI

[12] Donskikh A. O., Minakov D. A., Sirota A. A., “Optical methods of identifying the varieties of the components of grain mixtures based on using artificial neural networks for data analysis”, Journal of Theoretical and Applied Information Technology, 96:2 (2018), 534–542

[13] Solov'yov A. M., Semyonov M. E. “Iskusstvennaya nejronnaya set' s gisterezisnoj funkciej aktivacii: stabilizaciya neustojchivyh ob'ektov [Artificial neural network with hysteresis activation function: stabilization of unstable objects]”, Teoriya i tekhnika radiosvyazi, 2016, no. 3, 11–19 (in Russian)

[14] Semenov M. E., Abbas Z. H., Ishchuk I. N., Kanishcheva O. I., Meleshenko P. A., “State-feedback Control Principles for Inverted Pendulum with Hysteresis in Suspension”, Journal of Siberian Federal University. Mathematics Physics, 2016, no. 9(4), 498–509 | DOI | MR

[15] Radchenko A. N., “Informacionnyj klyuch k pamyati mozga [Information key to brain memory]”, Trudy SPIIRAN, 3:2 (2006), 269–286 (in Russian) | MR

[16] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI

[17] Galvani A., Volta A., Izbrannye raboty o zhivotnom ehlektrichestve [Selected works on animal electricity], Biomedgiz, Moscow, 1937, 436 pp. (in Russian) | MR

[18] Redozubov A., “Holographic Memory: A Novel Model of Information Processing by Neuronal Microcircuits”, The Physics of the Mind and Brain Disorders: Springer Series in Cognitive and Neural Systems, v. 11, Springer International Publishing, Switzerland, 2017, 271-295 | DOI

[19] Kashchenko S.A., Majorov V. V., Modeli volnovoj pamyati [Wave Memory Models], URSS, Moscow, 2009, 288 pp. (in Russia)

[20] Grachikov D. V., Semenov M. E., Kanishcheva O. I., “Segmentaciya monohromnyh izobrazhenij s ispol'zovaniem biologicheskoj nejronnoj seti gisterezisnoj prirody [Segmentation of monochrome images using a hysteresis biological neural network]”, Informatizaciya processov formirovaniya otkrytyh sistem na osnove SUBD, SAPR, ASNI i sistem iskusstvennogo intellekta, Materialy 7-j Mezhd. nauchn.-tekhn. konf., VoGTU, Vologda, 2013, 54-57 (in Russian)

[21] Solovyov A. M., Semenov M. E., Meleshenko P. A., Reshetova O. O., Popov M. A., Kabulova E. G., “Hysteretic nonlinearity and unbounded solutions in oscillating systems”, Procedia Engineering, 2017, no. 201, 578-583 | DOI

[22] Semenov M. E., Solovyov A. M., Meleshenko P. A., Balthazar J. M., “Nonlinear Damping: From Viscous to Hysteretic Dampers”, Recent Trends in Applied Nonlinear Mechanics and Physics, v. 199, Springer Proceedings in Physics, Cham, 2018 | MR

[23] Charalampakis A. E., The response and dissipated energy of Bouc-Wen hysteretic model revisited, Arch Appl Mech., Springer-Verlag, Berlin Heidelberg, 2014