Mots-clés : facie
@article{VKAM_2019_26_1_a7,
author = {M. {\CYRE}. Semenov and T. Yu. Zablotskaya},
title = {Choosing the model of biological neural network for image segmentation of a bio-liquid facie},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {78--93},
year = {2019},
volume = {26},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/}
}
TY - JOUR AU - M. Е. Semenov AU - T. Yu. Zablotskaya TI - Choosing the model of biological neural network for image segmentation of a bio-liquid facie JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2019 SP - 78 EP - 93 VL - 26 IS - 1 UR - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/ LA - en ID - VKAM_2019_26_1_a7 ER -
%0 Journal Article %A M. Е. Semenov %A T. Yu. Zablotskaya %T Choosing the model of biological neural network for image segmentation of a bio-liquid facie %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2019 %P 78-93 %V 26 %N 1 %U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/ %G en %F VKAM_2019_26_1_a7
M. Е. Semenov; T. Yu. Zablotskaya. Choosing the model of biological neural network for image segmentation of a bio-liquid facie. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a7/
[1] Vorob'ev A. V., Martusevich A. K., Peretyagin S. P., Kristallogenez biologicheskih zhidkostej i substratov v ocenke sostoyaniya organizma [Crystallogenesis of biological fluids and substrates in the assessment of the state of the body], FGU 'NNIITO Rosmedtekhnologij', Nizhnij Novgorod, 2008, 384 pp. (in Russian)
[2] Rapis E. G., Belok i zhizn' (samosborka i simmetriya nanostruktur belka)[Protein and life (self-assembly and symmetry of protein nanostructures)], ZL. Milta-PKPTIT, Ierusalim–Moscow, 2002, 257 pp. (in Russian)
[3] Markevich V. Eh., Kirilenko E. A., Petrashenko V. A. , Zablotskaya T. Yu., Bilokon' M. A., “Metody klinovidnoj degidratacii biologicheskih zhidkostej [Methods wedge dehydration of biological fluids]”, Morphologia, 8:1 (2014), 113–117 (in Russian)
[4] Zablotskaya T. Yu., “Analiz osnovnyh processov i tipov struktur pri degidratacii biologicheskih zhidkostej [Analiz osnovnyh processov i tipov struktur pri degidratacii biologicheskih zhidkostej]”, Elektromekhanichnie i energozberegayuchie sistemi, 12:4 (2010), 92-95 (in Russian)
[5] Egmont-Petersen M., de Ridderb D., Handels H., “Image processing with neural networks - a review”, Pattern Recognition, 2002, no. 35, 2279–2301 | DOI | Zbl
[6] Wang L., Zhang K., Liu X., Long E., Jiang J., An Y., Zhang J., Liu Z., Lin Z., Li X., Chen J., Cao Q., Li J., Wu X., Wang D., Li W., Lin H., “Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images”, Sci. Rep., 2017, no. 7, 41545 | DOI
[7] Sridevi M., Mala C., “A Survey on Monochrome Image Segmentation Methods”, Procedia Technology, 2012, no. 6, 548–555 | DOI
[8] Foster B., Bagci U., Mansoor A., Xu Z., Mollura D. J., “A review on segmentation of positron emission tomography images”, Computers in Biology and Medicine, 50 (2014), 76–96 | DOI
[9] Schmidhuber J., “Deep learning in neural networks: An overview”, Neural Networks, 2015, no. 61, 85–117 | DOI
[10] Shen D., Wu G., Suk H., “Deep Learning in Medical Image Analysis”, Annu Rev Biomed Eng., 2017, no. 19, 221–248 | DOI
[11] Moeskops P, Viergever M. A., Mendrik A. M., de Vries L. S., Benders MJNL, Isgum I., “Automatic segmentation of MR brain images with a convolutional neural network”, IEEE Transactions on Medical Imaging, 2016, no. 35, 1252–1261 | DOI
[12] Donskikh A. O., Minakov D. A., Sirota A. A., “Optical methods of identifying the varieties of the components of grain mixtures based on using artificial neural networks for data analysis”, Journal of Theoretical and Applied Information Technology, 96:2 (2018), 534–542
[13] Solov'yov A. M., Semyonov M. E. “Iskusstvennaya nejronnaya set' s gisterezisnoj funkciej aktivacii: stabilizaciya neustojchivyh ob'ektov [Artificial neural network with hysteresis activation function: stabilization of unstable objects]”, Teoriya i tekhnika radiosvyazi, 2016, no. 3, 11–19 (in Russian)
[14] Semenov M. E., Abbas Z. H., Ishchuk I. N., Kanishcheva O. I., Meleshenko P. A., “State-feedback Control Principles for Inverted Pendulum with Hysteresis in Suspension”, Journal of Siberian Federal University. Mathematics Physics, 2016, no. 9(4), 498–509 | DOI | MR
[15] Radchenko A. N., “Informacionnyj klyuch k pamyati mozga [Information key to brain memory]”, Trudy SPIIRAN, 3:2 (2006), 269–286 (in Russian) | MR
[16] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117:4 (1952), 500–544 | DOI
[17] Galvani A., Volta A., Izbrannye raboty o zhivotnom ehlektrichestve [Selected works on animal electricity], Biomedgiz, Moscow, 1937, 436 pp. (in Russian) | MR
[18] Redozubov A., “Holographic Memory: A Novel Model of Information Processing by Neuronal Microcircuits”, The Physics of the Mind and Brain Disorders: Springer Series in Cognitive and Neural Systems, v. 11, Springer International Publishing, Switzerland, 2017, 271-295 | DOI
[19] Kashchenko S.A., Majorov V. V., Modeli volnovoj pamyati [Wave Memory Models], URSS, Moscow, 2009, 288 pp. (in Russia)
[20] Grachikov D. V., Semenov M. E., Kanishcheva O. I., “Segmentaciya monohromnyh izobrazhenij s ispol'zovaniem biologicheskoj nejronnoj seti gisterezisnoj prirody [Segmentation of monochrome images using a hysteresis biological neural network]”, Informatizaciya processov formirovaniya otkrytyh sistem na osnove SUBD, SAPR, ASNI i sistem iskusstvennogo intellekta, Materialy 7-j Mezhd. nauchn.-tekhn. konf., VoGTU, Vologda, 2013, 54-57 (in Russian)
[21] Solovyov A. M., Semenov M. E., Meleshenko P. A., Reshetova O. O., Popov M. A., Kabulova E. G., “Hysteretic nonlinearity and unbounded solutions in oscillating systems”, Procedia Engineering, 2017, no. 201, 578-583 | DOI
[22] Semenov M. E., Solovyov A. M., Meleshenko P. A., Balthazar J. M., “Nonlinear Damping: From Viscous to Hysteretic Dampers”, Recent Trends in Applied Nonlinear Mechanics and Physics, v. 199, Springer Proceedings in Physics, Cham, 2018 | MR
[23] Charalampakis A. E., The response and dissipated energy of Bouc-Wen hysteretic model revisited, Arch Appl Mech., Springer-Verlag, Berlin Heidelberg, 2014