@article{VKAM_2019_26_1_a5,
author = {O. D. Lipko},
title = {Stability of the rest points fractional oscillator {FitzHugh-Nagumo}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {63--70},
year = {2019},
volume = {26},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/}
}
O. D. Lipko. Stability of the rest points fractional oscillator FitzHugh-Nagumo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/
[1] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl
[2] Parovik R. I., Matematicheskoe modelirovanie nelineinykh ereditarnykh ostsillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2017, 135 pp.
[3] Volterra V., “Sur les Equations Integro-Differentielleset Leurs Applications”, Acta Mathematica, 35:1 (1912), 295-356 | DOI | MR | Zbl
[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[5] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1961, no. 1, 446—466 | MR
[6] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 1962, no. 50, 2061–2070 | DOI
[7] Spirtus V. B., “Vozmozhnosti biofizicheskih modelej tipa Fitckh'yu-Nagumo v otobrazhenii dvumernoj migracii sejsmichnosti [Possibilities of biophysical models such as Fitzhugh-Nagumo in the mapping of two-dimensional seismicity migration]”, Geofizicheskij zhurnal, 32:1 (2010), 134-143 (in Russia)
[8] Lipko O. D., “Mathematical model of nerve impulse propagation with regard to heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 16:1 (2017), 52-60 (transl. Engl.) | MR
[9] Lipko O. D., “Matematicheskaya model' ehreditarnogo oscillyatora FitcKH'yu-Nagumo [Mathematical model of hereditary FitzHugh-Nagumo oscillator]”, Materialy mezhdunarodnoj nauchnoj konferencii «Aktual'nye problemy prikladnoj matematiki i fiziki» (Kabardino-Balkariya, Nal'chik, 17–21 maya 2017 g.), Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 154, 2018, 72–80 (in Russia)
[10] Lipko O. D., “Investigation of regular and chaotic modes of the FitzHughNagumo fractal oscillator”, Vestnik KRAUNC. Fiz.-mat. nauki, 2018, no. 3(23), 116-123 (in Russia) | MR
[11] Lipko O. D., Parovik R. I., “Some aspects of investigation of limit cycles of FitzHugh-Nagumo oscillator with degree memory”, J. Phys.: Conf. Ser, 1141 (2018), 012125 | DOI
[12] Tavazoei M. S., Haeri M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628-2637 | DOI | MR | Zbl
[13] Gerasimov A. N., “Obobshchenie linejnyh zakonov deformacii i ih prilozhenie k zadacham vnutrennego treniya [Generalization of the linear laws of deformation and their application to the problems of internal friction]”, AN SSSR. Prikladnaya matematika i mekhanika, 1948, no. 2, 529––539 (in Russia)
[14] Caputo M., Elasticit'a e dissipazione, Zanichelli, Bologna, 1969, 150 pp.