Stability of the rest points fractional oscillator FitzHugh-Nagumo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 63-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, using the qualitative analysis, we studied the stability of the point of rest of the fractional oscillator FitzHugh-Nagumo in commensurate and incommensurable cases. For the corresponding point of rest, using the numerical method of the theory of finite difference schemes, phase trajectories were constructed. It is shown that quiescent points can be both asymptotically stable, which correspond to stable focus, and are asymptotically unstable (unstable focus), and for them the phase trajectories usually go to the limit cycle.
Keywords: rest points, stability, limit cycle, FitzHugh-Nagumo fractional oscillator, phase trajectories.
@article{VKAM_2019_26_1_a5,
     author = {O. D. Lipko},
     title = {Stability of the rest points fractional oscillator {FitzHugh-Nagumo}},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {63--70},
     year = {2019},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/}
}
TY  - JOUR
AU  - O. D. Lipko
TI  - Stability of the rest points fractional oscillator FitzHugh-Nagumo
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 63
EP  - 70
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/
LA  - ru
ID  - VKAM_2019_26_1_a5
ER  - 
%0 Journal Article
%A O. D. Lipko
%T Stability of the rest points fractional oscillator FitzHugh-Nagumo
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 63-70
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/
%G ru
%F VKAM_2019_26_1_a5
O. D. Lipko. Stability of the rest points fractional oscillator FitzHugh-Nagumo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/

[1] Petras I., Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation, Springer, Beijing; Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl

[2] Parovik R. I., Matematicheskoe modelirovanie nelineinykh ereditarnykh ostsillyatorov, KamGU im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2017, 135 pp.

[3] Volterra V., “Sur les Equations Integro-Differentielleset Leurs Applications”, Acta Mathematica, 35:1 (1912), 295-356 | DOI | MR | Zbl

[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[5] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1961, no. 1, 446—466 | MR

[6] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 1962, no. 50, 2061–2070 | DOI

[7] Spirtus V. B., “Vozmozhnosti biofizicheskih modelej tipa Fitckh'yu-Nagumo v otobrazhenii dvumernoj migracii sejsmichnosti [Possibilities of biophysical models such as Fitzhugh-Nagumo in the mapping of two-dimensional seismicity migration]”, Geofizicheskij zhurnal, 32:1 (2010), 134-143 (in Russia)

[8] Lipko O. D., “Mathematical model of nerve impulse propagation with regard to heredity”, Bulletin KRASEC. Physical and Mathematical Sciences, 16:1 (2017), 52-60 (transl. Engl.) | MR

[9] Lipko O. D., “Matematicheskaya model' ehreditarnogo oscillyatora FitcKH'yu-Nagumo [Mathematical model of hereditary FitzHugh-Nagumo oscillator]”, Materialy mezhdunarodnoj nauchnoj konferencii «Aktual'nye problemy prikladnoj matematiki i fiziki» (Kabardino-Balkariya, Nal'chik, 17–21 maya 2017 g.), Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 154, 2018, 72–80 (in Russia)

[10] Lipko O. D., “Investigation of regular and chaotic modes of the FitzHughNagumo fractal oscillator”, Vestnik KRAUNC. Fiz.-mat. nauki, 2018, no. 3(23), 116-123 (in Russia) | MR

[11] Lipko O. D., Parovik R. I., “Some aspects of investigation of limit cycles of FitzHugh-Nagumo oscillator with degree memory”, J. Phys.: Conf. Ser, 1141 (2018), 012125 | DOI

[12] Tavazoei M. S., Haeri M., “Chaotic attractors in incommensurate fractional order systems”, Physica D: Nonlinear Phenomena, 237:20 (2008), 2628-2637 | DOI | MR | Zbl

[13] Gerasimov A. N., “Obobshchenie linejnyh zakonov deformacii i ih prilozhenie k zadacham vnutrennego treniya [Generalization of the linear laws of deformation and their application to the problems of internal friction]”, AN SSSR. Prikladnaya matematika i mekhanika, 1948, no. 2, 529––539 (in Russia)

[14] Caputo M., Elasticit'a e dissipazione, Zanichelli, Bologna, 1969, 150 pp.