Stability of the rest points fractional oscillator FitzHugh-Nagumo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 63-70
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, using the qualitative analysis, we studied the stability of the point of rest of the fractional oscillator FitzHugh-Nagumo in commensurate and incommensurable cases. For the corresponding point of rest, using the numerical method of the theory of finite difference schemes, phase trajectories were constructed. It is shown that quiescent points can be both asymptotically stable, which correspond to stable focus, and are asymptotically unstable (unstable focus), and for them the phase trajectories usually go to the limit cycle.
Keywords:
rest points, stability, limit cycle, FitzHugh-Nagumo fractional oscillator, phase trajectories.
@article{VKAM_2019_26_1_a5,
author = {O. D. Lipko},
title = {Stability of the rest points fractional oscillator {FitzHugh-Nagumo}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {63--70},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/}
}
O. D. Lipko. Stability of the rest points fractional oscillator FitzHugh-Nagumo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a5/