Mathematical model of dynamics of small enterprises with account of memory effects
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 46-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a new mathematical model of the dynamics of small enterprises with the participation of foreign investment, which takes into account the memory effect and affects the rate of change in the value of production assets. This memory effect can be considered as a property of the economic environment, for example, the influence on the production of external factors, in which the cost of production assets will depend on its previous values. This non-local effect can be written in terms of a fractional order derivative. In this paper, we will assume that the order of the fractional derivative is a function of time. Therefore, we will solve the initial model equation using numerical methods of the theory of finite difference schemes. Further, in the work, visualization and interpretation of the calculation result was carried out.
Keywords: small enterprise dynamics, memory, model, fractional derivative.
@article{VKAM_2019_26_1_a3,
     author = {E. A. Gafurova and Y. L. Michaylov and Y. V. Grushko and R. I. Parovik and I. A. Kashutina},
     title = {Mathematical model of dynamics of small enterprises with account of memory effects},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {46--53},
     year = {2019},
     volume = {26},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a3/}
}
TY  - JOUR
AU  - E. A. Gafurova
AU  - Y. L. Michaylov
AU  - Y. V. Grushko
AU  - R. I. Parovik
AU  - I. A. Kashutina
TI  - Mathematical model of dynamics of small enterprises with account of memory effects
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 46
EP  - 53
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a3/
LA  - ru
ID  - VKAM_2019_26_1_a3
ER  - 
%0 Journal Article
%A E. A. Gafurova
%A Y. L. Michaylov
%A Y. V. Grushko
%A R. I. Parovik
%A I. A. Kashutina
%T Mathematical model of dynamics of small enterprises with account of memory effects
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 46-53
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a3/
%G ru
%F VKAM_2019_26_1_a3
E. A. Gafurova; Y. L. Michaylov; Y. V. Grushko; R. I. Parovik; I. A. Kashutina. Mathematical model of dynamics of small enterprises with account of memory effects. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 46-53. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a3/

[1] Gafurova E. A., Parovik R. I., “Mathematical modeling of fractal financial system in computer environment Scilab”, Russian Journal of Mathematical Research. Series A, 2018, no. 4, 23-30

[2] Makarov D. V., Parovik R. I., “Modeling of the economic cycles using the theory of fractional calculus”, Journal of Internet Banking and Commerce, 21:S6 (2016)

[3] Chen W. Ch., “Nonlinear dynamic and chaos in a fractional-order financial system”, Chaos, Solitons and Fractals, 36 (2008), 1305–1314 | DOI

[4] Tarasova V. V., Tarasov V. E., “Progress in Fractional Differentiation and Applications”, Progr. Fract. Differ. Appl., 3:1 (2017), 1-6 | DOI

[5] Machado J. A. T., Lopes A. M., “Relative fractional dynamics of stock markets”, Nonlin. Dyn, 86:3 (2016), 1613–1619 | DOI | MR

[6] Laskin N., “Fractional market dynamics”, Physica A, 287:3 (2000), 482–492 | DOI | MR

[7] Kilbas A.A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[8] Egorova N. E., Hachatryan S. R., Marennyj M. A., “Differencial'nyj analiz razvitiya malyh predpriyatij, ispol'zuyushchih kreditno-investicionnyj resurs [Differential analysis of the development of small enterprises using credit and investment resources]”, Audit i finansovyj analiz, 2000, no. 4, 11 (in Russian)