On decomposition theorems of multifunctional Bergman type spaces in some domains in $C^{n}$
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 28-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present some extensions of well-known one functional results on atomic decompositions in classical Bergman spaces obtained earlier by various authors in some new multifunctional Bergman type spaces in various domains in higher dimension.
Keywords: Bergman type spaces, analytic functions, decomposition theorems.
@article{VKAM_2019_26_1_a2,
     author = {R. F. Shamoyan},
     title = {On decomposition theorems of multifunctional {Bergman} type spaces in some domains in $C^{n}$},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {28--45},
     year = {2019},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a2/}
}
TY  - JOUR
AU  - R. F. Shamoyan
TI  - On decomposition theorems of multifunctional Bergman type spaces in some domains in $C^{n}$
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 28
EP  - 45
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a2/
LA  - en
ID  - VKAM_2019_26_1_a2
ER  - 
%0 Journal Article
%A R. F. Shamoyan
%T On decomposition theorems of multifunctional Bergman type spaces in some domains in $C^{n}$
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 28-45
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a2/
%G en
%F VKAM_2019_26_1_a2
R. F. Shamoyan. On decomposition theorems of multifunctional Bergman type spaces in some domains in $C^{n}$. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 28-45. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a2/

[1] Coifman R., Rochderg R., “Representation theorems for holomorphic and harmonic functions $L^{p} $”, Asterisque, 1980, no. 77, 11-66 | MR | Zbl

[2] Rochderg R., Semmes S., “A decomposition theorem for BMO and applications”, Jour. of Func. Analysis., 1986, no. 67, 228-263 | DOI | MR

[3] Luecking D., “Representations and duality in weighted spaces of analytic functions”, Indiana Univ. Math. Journal, 34:2 (1985), 319-336 | DOI | MR | Zbl

[4] Li S., Shamoyan R., “O nekotorykh rasshireniyakh teorema ob atomnykh razlozheniyakh prostranstv Bergmana i Blokha v yedinichnom share i svyazannykh s nimi zadachakh [On some extensions of theorems on atomic decompositions of Bergman and Bloch spaces in the unit ball and related problems]”, Zhurnal ellipticheskikh uravneniy i kompleksnykh peremennykh [Journal of Elliptic equations and Complex Variables], 2010 (In Russ.) | MR

[5] Shamoyan R., Arsenovic M., “On distance estimates and atomic decompositions in spaces of analytic functions on stricty pseudoconvex domains”, Bulletin Korean Math. Society, 2015 | MR

[6] Bekolle D., Kagou A. T., “Reproducing properties and $L^{p} $ estimates for Bergman projections in Siegel domains of second type”, Studia Math., 115:3 (1995) | DOI | MR | Zbl

[7] Bekolle D., Bonami A., Garrigos G., Ricci F., Sehba B. Analytic Besov spaces and symmetric cones, Jour. Fur seine and ang., 2010, no. 647, 25-56 | MR | Zbl

[8] Yamaji S., Some properties of Bergman kernel in minimal bounded homogeneous domain, Arxiv, 2013

[9] Yamaji S., Essential norm estimates for positive Toeplitz operators on the weighted Bergman space, Arxiv, 2013 | MR

[10] Bekolle D., Kagou A., “Molecular decomposition and interpolation”, Int. Equat. Oper. Theory, 31:2 (1998), 150-177 | DOI | MR | Zbl

[11] Bonami A., Bekolle D., Garrigos G., “Lecture notes on Bergman projections in tube domains over symmetric cones”, Yaonde Proc. Int. Workshop, 2001, 75 pp.

[12] Kagou A., Temgoua Domaines de Siegel de type II noyau de Bergman, These de 3 cycle, Yaounde, 1995

[13] Gheorghi L. G., “Interpolation of Besov spaces and applications”, Le Mathematiche, LV:1 (2000), 29-42 | MR

[14] Zhu K., Spaces of holomorphic functions in the ball, Springer, N-Y, 2005 | MR | Zbl

[15] Rochberg R., “Decomposition theorems for Bergman spaces and applications”, Operator theory and function theory, 1985, 225-277 | DOI | MR | Zbl

[16] Krantz S., Li S.-Y., “On decomposition theorems for Hardy spaces in domains in ${\mathbb C}^{n} $ and applications”, Journal of Fourier analysis and applications, 1995 | MR

[17] Shamoyan F., “O teoremakh vlozheniya i sledakh $H^{p}$ prostranstv Khardi na diagonali [On embedding theorems and traces of $H^{p}$ Hardy spaces on diagonal]”, Matematika Sbornik [Math. Sbornik], 1978 (In Russ.)

[18] Shamoyan F., Djrbashian A., Temy teorii prostranstv $A^p_\alpha$ [Topics in the theory of $A^p_\alpha$ spaces], Teubner Texte zur Math., 1988 | MR

[19] Mengotti G., “The Bloch space for minimall ball”, Studia Math., 148:2 (2001), 131-142 | DOI | MR | Zbl