Hyper-Tauberian algebras defined by a Banach algebra homomorphism
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 17-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ and $B$ be Banach algebras and $T:B\longrightarrow A$ be a continuous homomorphism. We consider left multipliers from $A\times_T B$ into its the first dual i.e., $A^*\times B^*$ and we show that $A\times_T B$ is a hyper-Tauberian algebra if and only if $A$ and $B$ are hyper-Tauberian algebras.
Keywords: Local operator, hyper-Tauberian algebra, Tauberian algebra.
@article{VKAM_2019_26_1_a1,
     author = {A. Ebadian and A. Jabbari},
     title = {Hyper-Tauberian algebras defined by a {Banach} algebra homomorphism},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/}
}
TY  - JOUR
AU  - A. Ebadian
AU  - A. Jabbari
TI  - Hyper-Tauberian algebras defined by a Banach algebra homomorphism
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 17
EP  - 27
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/
LA  - en
ID  - VKAM_2019_26_1_a1
ER  - 
%0 Journal Article
%A A. Ebadian
%A A. Jabbari
%T Hyper-Tauberian algebras defined by a Banach algebra homomorphism
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 17-27
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/
%G en
%F VKAM_2019_26_1_a1
A. Ebadian; A. Jabbari. Hyper-Tauberian algebras defined by a Banach algebra homomorphism. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/