Hyper-Tauberian algebras defined by a Banach algebra homomorphism
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 17-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ and $B$ be Banach algebras and $T:B\longrightarrow A$ be a continuous homomorphism. We consider left multipliers from $A\times_T B$ into its the first dual i.e., $A^*\times B^*$ and we show that $A\times_T B$ is a hyper-Tauberian algebra if and only if $A$ and $B$ are hyper-Tauberian algebras.
Keywords: Local operator, hyper-Tauberian algebra, Tauberian algebra.
@article{VKAM_2019_26_1_a1,
     author = {A. Ebadian and A. Jabbari},
     title = {Hyper-Tauberian algebras defined by a {Banach} algebra homomorphism},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {17--27},
     year = {2019},
     volume = {26},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/}
}
TY  - JOUR
AU  - A. Ebadian
AU  - A. Jabbari
TI  - Hyper-Tauberian algebras defined by a Banach algebra homomorphism
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2019
SP  - 17
EP  - 27
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/
LA  - en
ID  - VKAM_2019_26_1_a1
ER  - 
%0 Journal Article
%A A. Ebadian
%A A. Jabbari
%T Hyper-Tauberian algebras defined by a Banach algebra homomorphism
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2019
%P 17-27
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/
%G en
%F VKAM_2019_26_1_a1
A. Ebadian; A. Jabbari. Hyper-Tauberian algebras defined by a Banach algebra homomorphism. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 26 (2019) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/VKAM_2019_26_1_a1/

[1] Abtahi F., Ghafarpanah A., Rejali A. “Biprojectivity and biflatness of Lau product Banach algebras defined by a Banach algebra morphism”, Bull. Aust. Math. Soc., 91:1 (2015), 134-144 | DOI | MR | Zbl

[2] Abtahi F., Ghafarpanah A., “A note on cyclic amenability of the Lau product Banach algebras defined by a Banach algebra morphism”, Bull. Aust. Math. Soc., 92:2 (2015), 282-289 | DOI | MR | Zbl

[3] Bade W. G., Curtis P. C., Dales H. G., “Amenability and weak amenability for Beurling and Lipschitz algebras”, Proc. London Math. Soc., 55:2 (1987), 359-377 | DOI | MR | Zbl

[4] Bagheri A., Haghnejad Azar K., Jabbari A., “Arens regularity of module actions and weak amenability of Banach algebras”, Periodica Math. Hung., 71:2 (2015), 224-235 | DOI | MR | Zbl

[5] Bhatt S. J., Dabhi P. A., “Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism”, Bull. Aust. Math. Soc., 2013, no. 87, 195-206 | DOI | MR | Zbl

[6] Dabhi P.A., Jabbari A., Haghnejad Azar K., “Some notes on amenability and weak amenability of Lau product of Banach algebras defined by a Banach algebra morphism”, Acta Math. Sinica, English Series, 31:9 (2015), 1461-1474 | DOI | MR | Zbl

[7] Ghaderi E., Nasr-Isfahani R., Nemati M., “Some notions of amenability for certain products of Banach algebras”, Colloquium Math., 130:2 (2013), 147-157 | DOI | MR | Zbl

[8] Gourdeau F., “Amenability and the second dual of a Banach algebras”, Studia Math., 125:1 (1997), 75-81 | DOI | MR | Zbl

[9] Javanshiri H., Nemati M. On a certain product of Banach algebras and some of its properties, Proc. Rom. Acad. Ser. A, 15:3 (2014), 219-227 https://acad.ro/sectii2002/proceedings/doc2014-3/01-Nemati.pdf | MR | Zbl

[10] Johnson B.E., “Cohomology in Banach algebras”, Mem. Amer. Math. Soc., 127 (1972) | MR | Zbl

[11] Johoson B.E., “Weak amenability of group algebras”, Bull. Lond. Math. Soc., 1991, no. 23(3), 281–284 | DOI | MR

[12] Johnson B. E., “Local derivations on $C^*$-algebras are derivations”, Trans. Amer. Math. Soc., 353:1 (2001), 313-325 | DOI | MR | Zbl

[13] Kadison R. V., “Local derivation”, J. Algebra, 130:2 (1990), 494-509 | DOI | MR | Zbl

[14] Kelly J. L., General topology, American Book, Van Nostrand, Reinhold, 1969

[15] Lau A. T-M., “Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups”, Fund. Math., 118 (1983), 161–175 | DOI | MR | Zbl

[16] Monfared M.S., “On certain products of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups”, Studia Math., 178:3 (2007), 277-294 | DOI | MR | Zbl

[17] Nemati M., Javanshiri H., “Some homological and cohomological notions on $T$-Lau product of Banach algebras”, Banach J. Math. Anal., 9:2 (2015), 183-195 | DOI | MR | Zbl

[18] Ramezanpour M., “Weak amenability of the Lau product of Banach algebras defined by a Banach algebra morphism”, Bull. Korean Math. Soc., 54:6 (2017), 1991-1999 | MR

[19] Rickart C. E., General theory of Banach algebra, Van Nostrand, Princeton, 1960 | MR

[20] Samei E., “Hyper-Tauberian algebras and weak amenability of Figà-Talamanca-Herz algebras”, J. Func. Anal., 231:1 (2006), 195-220 | DOI | MR | Zbl

[21] Samei E., “Local properties of the Hochschild cohomology of $C^*$-algebras”, J. Aust. Math. Soc., 84 (2008), 117-130 | DOI | Zbl

[22] Walter M. E., “W$^*$-algebras and nonabelian harmonic analysis”, J. Func. Anal., 1972, no. 11, 17-38 | DOI | Zbl

[23] Zhang Y., “Weak amenability of module extensions of Banach algebras Trans.”, Amer. Math. Soc., 354:10 (2002), 4131-4151 | DOI | MR | Zbl