@article{VKAM_2018_5_a7,
author = {O. V. Sheremetyeva},
title = {Model relaxation processes in the different modes of plastic deformation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {74--82},
year = {2018},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_5_a7/}
}
O. V. Sheremetyeva. Model relaxation processes in the different modes of plastic deformation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2018), pp. 74-82. http://geodesic.mathdoc.fr/item/VKAM_2018_5_a7/
[1] Carbone V., Sorriso-Valvo L., Harabaglia P., Guerra I., “Unified scaling law for waiting times between seismic events”, Europhys. Lett., 6:71 (2005), 1036–104210 | DOI
[2] Bak P., Christensen K., Danon L., Scanlon T., “Unified Scaling Law for Earthquakes”, Phys. Rev. Lett., 88:17. (2002), 178501-1–178501-4. | DOI
[3] Shevtsov B., Sheremetyeva O., “Fractional models of seismoacoustic and electromagnetic activity”, E3S Web of Conferences, 20 (2017), 02013. DOI: 10.1051/e3sconf/20172002013 | DOI
[4] Shevtsov B. M., Sagitova R. N., “Statistical analysis of seismic processes on the basis of the diffusion approach”, Doklady Earth Sciences, 426:1 (2009), 642–644
[5] Shevtsov B. M., Sagitova R. N., “A diffusion approach to the statistical analysis of Kamchatka Seismicity”, Journal of Vulcanology and Seismology, 6:2 (2012), 116–125
[6] Fedotov S. A., “O zakonomernostyah raspredeleniya sil'nyh zemletryasenij Kamchatki, Kuril'skih ostrovov i severo-vostochnoj Yaponii”, Tr. IFZAN SSSR, Nauka, M., 1968, 121–150
[7] Cahoy D. O., Uhaikin V. V., Woyczyski W. A., “Parameter estimation for fractional Poisson processes”, Journal of Statistical Planning and Inference, 2010, no. 140, 3106-3120 | DOI | MR | Zbl
[8] Laskin N., “Fractional Poisson processes”, Communications in Nonlinear Science and Numerical Simulation, 2003, no. 8, 201-213 | DOI | MR | Zbl
[9] Uchajkin V. V., “Avtomodel'naya anomal'naya diffuziya i ustojchivye zakony”, UFN, 2003, no. 173, 847–876 | DOI