Model relaxation processes in the different modes of plastic deformation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2018), pp. 74-82
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of five modes of deformation activity based on the compound Poisson process and its fractal generalizations is considered. Comparison of the analytical dependences with the experimental ones obtained by the authors Carbon and Buck, was carried out [1, 2].
Keywords: Mittag-Leffler function, scale laws, stochastic model, plastic deformations, relaxation processes.
@article{VKAM_2018_5_a7,
     author = {O. V. Sheremetyeva},
     title = {Model relaxation processes in the different modes of plastic deformation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {74--82},
     year = {2018},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_5_a7/}
}
TY  - JOUR
AU  - O. V. Sheremetyeva
TI  - Model relaxation processes in the different modes of plastic deformation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 74
EP  - 82
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_5_a7/
LA  - ru
ID  - VKAM_2018_5_a7
ER  - 
%0 Journal Article
%A O. V. Sheremetyeva
%T Model relaxation processes in the different modes of plastic deformation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 74-82
%N 5
%U http://geodesic.mathdoc.fr/item/VKAM_2018_5_a7/
%G ru
%F VKAM_2018_5_a7
O. V. Sheremetyeva. Model relaxation processes in the different modes of plastic deformation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 5 (2018), pp. 74-82. http://geodesic.mathdoc.fr/item/VKAM_2018_5_a7/

[1] Carbone V., Sorriso-Valvo L., Harabaglia P., Guerra I., “Unified scaling law for waiting times between seismic events”, Europhys. Lett., 6:71 (2005), 1036–104210 | DOI

[2] Bak P., Christensen K., Danon L., Scanlon T., “Unified Scaling Law for Earthquakes”, Phys. Rev. Lett., 88:17. (2002), 178501-1–178501-4. | DOI

[3] Shevtsov B., Sheremetyeva O., “Fractional models of seismoacoustic and electromagnetic activity”, E3S Web of Conferences, 20 (2017), 02013. DOI: 10.1051/e3sconf/20172002013 | DOI

[4] Shevtsov B. M., Sagitova R. N., “Statistical analysis of seismic processes on the basis of the diffusion approach”, Doklady Earth Sciences, 426:1 (2009), 642–644

[5] Shevtsov B. M., Sagitova R. N., “A diffusion approach to the statistical analysis of Kamchatka Seismicity”, Journal of Vulcanology and Seismology, 6:2 (2012), 116–125

[6] Fedotov S. A., “O zakonomernostyah raspredeleniya sil'nyh zemletryasenij Kamchatki, Kuril'skih ostrovov i severo-vostochnoj Yaponii”, Tr. IFZAN SSSR, Nauka, M., 1968, 121–150

[7] Cahoy D. O., Uhaikin V. V., Woyczyski W. A., “Parameter estimation for fractional Poisson processes”, Journal of Statistical Planning and Inference, 2010, no. 140, 3106-3120 | DOI | MR | Zbl

[8] Laskin N., “Fractional Poisson processes”, Communications in Nonlinear Science and Numerical Simulation, 2003, no. 8, 201-213 | DOI | MR | Zbl

[9] Uchajkin V. V., “Avtomodel'naya anomal'naya diffuziya i ustojchivye zakony”, UFN, 2003, no. 173, 847–876 | DOI