Criteria for the stress-strain state of the medium and the power law of relaxation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 90-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of high stress zone in the medium with point sources in the form of double forces is presented. Linear and nonlinear dilatancy criteria is calculated on data from the seismic Havard CMT catalog. Using the example of a visco-elastic model, power laws are constructed for the promotion of deformations under constant stress in a medium. A computational scheme is presented on the basis of finding the fractional degree of the operator of a system of algebraic linear equations.
Keywords: stress-strain, power law, computations.
@article{VKAM_2018_4_a8,
     author = {G. M. Vodinchar and A. S. Perezhogin},
     title = {Criteria for the stress-strain state of the medium and the power law of relaxation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {90--96},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a8/}
}
TY  - JOUR
AU  - G. M. Vodinchar
AU  - A. S. Perezhogin
TI  - Criteria for the stress-strain state of the medium and the power law of relaxation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 90
EP  - 96
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a8/
LA  - ru
ID  - VKAM_2018_4_a8
ER  - 
%0 Journal Article
%A G. M. Vodinchar
%A A. S. Perezhogin
%T Criteria for the stress-strain state of the medium and the power law of relaxation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 90-96
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a8/
%G ru
%F VKAM_2018_4_a8
G. M. Vodinchar; A. S. Perezhogin. Criteria for the stress-strain state of the medium and the power law of relaxation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 90-96. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a8/

[1] Alekseev A. C., Belonosov A. C., Petrenko V. E., “O koncepcii mnogodisciplinarnogo prognoza zemletryasenij s ispol'zovaniem integral'nogo predvestnika. Problemy dinamiki litosfery i sejsmichnosti”, Vychislitel'naya sejsmologiya, 2001, no. 32(1), 81–97

[2] Perezhogin A. S., SHevcov B. M., Sagitova R. N., Vodinchar G. M., “Modelirovanie zon geoakusticheskoj ehmissii”, Matematicheskoe modelirovanie, 2007, no. 19(11), 59–64 | Zbl

[3] Perezhogin A. S., SHevcov B. M., “Modeli napryazhenno-deformirovannogo sostoyaniya gornyh porod pri podgotovke zemletryasenij i ih svyaz' s geoakusticheskimi nablyudeniyami”, Vychislitel'nye tekhnologii, 2009, no. 14(3), 48–57 | Zbl

[4] “Razvitie pripoverhnostnyh zon dilatansii kak vozmozhnaya prichina anomalij v parametrah sejsmicheskoj ehmissii pered sil'nymi zemletryaseniyami”, Tihookeanskaya geologiya, 2012, no. 31(1), 96–106

[5] Mindlin R. D., “Force at a point in the interior of a semi-infinite solid”, Physics, 1936, no. 7(5), 195–202 | DOI | Zbl

[6] Ekström G., Nettles M., Dziewoński A. M., “The global CMT project 2004–2010: Centroid-moment tensors for 13017 earthquakes”, Physics of the Earth and Planetary Interiors, 200 (2012), 1–9 | DOI

[7] Kuzin I. P., Fokalnaya zona i stroenie verkhnei mantii v raione Vostochnoi Kamchatki, Nauka, M., 1974, 132 pp.

[8] Rejner M., Reologiya, Nauka, M., 1965, 224 pp.

[9] Revuzhenko A. F., Mekhanika sypucheej sredy, Ofset, Novosibirsk, 2003, 373 pp.

[10] Uchajkin V. V., Metod drobnyh proizvodnyh, Artishok, Ul'yanovsk, 2008, 512 pp.

[11] Il'in I. A., Noshchenko D. S., Perezhogin A. S., “Chislennye resheniya sistemy linejnyh uravnenij s drobnoj stepen'yu matricy differencial'nogo operatora”, Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2013, no. 7(2), 7–11 | Zbl