@article{VKAM_2018_4_a6,
author = {L. M. \`Eneeva},
title = {On {Neumann} problem for equation with fractional derivatives with different starting points},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {61--65},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a6/}
}
L. M. Èneeva. On Neumann problem for equation with fractional derivatives with different starting points. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 61-65. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a6/
[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[2] Rekhviashvili S.SH., “Formalizm Lagranzha s drobnoj proizvodnoj v zadachah mekhaniki”, Pis'ma v ZHTF, 30:2 (2004), 33–37
[3] Rekhviashvili S.SH., “K opredeleniyu fizicheskogo smysla drobnogo integro-differencirovaniya”, Nelinejnyj mir, 5:4 (2007), 194–197
[4] Eneeva L.M., “Kraevaya zadacha dlya differencial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNC. Fiz.-mat. nauki, 3:2(11) (2015), 39–44
[5] Eneeva L.M., “Ocenka pervogo sobstvennogo znacheniya zadachi Dirihle dlya obyknovennogo differencial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Izvestiya KBNC RAN, 2017, no. 1(75) | Zbl
[6] Stanković B., “An equation with left and right fractional derivatives”, Publications de l’institut mathématique. Nouvelle série,, 80(94) (2006), 259–272 | DOI | MR | Zbl
[7] Atanackovic T. M., Stankovic B., “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 | MR | Zbl
[8] Torres C., “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142 | DOI
[9] Tokmagambetov N., Torebek B.T., “Fractional Analogue of Sturm-Liouville Operator”, Documenta Mathematica, 21 (2016), 1503–1514 | MR | Zbl