On Neumann problem for equation with fractional derivatives with different starting points
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 61-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we investigate solvability of the Neumann problem for an equation with fractional derivatives with different starting points. An estimate for the first nonzero eigenvalue is found.
Keywords: fractional derivative, Neumann problem, eigenvalue.
@article{VKAM_2018_4_a6,
     author = {L. M. \`Eneeva},
     title = {On {Neumann} problem for equation with fractional derivatives with different starting points},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {61--65},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a6/}
}
TY  - JOUR
AU  - L. M. Èneeva
TI  - On Neumann problem for equation with fractional derivatives with different starting points
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 61
EP  - 65
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a6/
LA  - ru
ID  - VKAM_2018_4_a6
ER  - 
%0 Journal Article
%A L. M. Èneeva
%T On Neumann problem for equation with fractional derivatives with different starting points
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 61-65
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a6/
%G ru
%F VKAM_2018_4_a6
L. M. Èneeva. On Neumann problem for equation with fractional derivatives with different starting points. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 61-65. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a6/

[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[2] Rekhviashvili S.SH., “Formalizm Lagranzha s drobnoj proizvodnoj v zadachah mekhaniki”, Pis'ma v ZHTF, 30:2 (2004), 33–37

[3] Rekhviashvili S.SH., “K opredeleniyu fizicheskogo smysla drobnogo integro-differencirovaniya”, Nelinejnyj mir, 5:4 (2007), 194–197

[4] Eneeva L.M., “Kraevaya zadacha dlya differencial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNC. Fiz.-mat. nauki, 3:2(11) (2015), 39–44

[5] Eneeva L.M., “Ocenka pervogo sobstvennogo znacheniya zadachi Dirihle dlya obyknovennogo differencial'nogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Izvestiya KBNC RAN, 2017, no. 1(75) | Zbl

[6] Stanković B., “An equation with left and right fractional derivatives”, Publications de l’institut mathématique. Nouvelle série,, 80(94) (2006), 259–272 | DOI | MR | Zbl

[7] Atanackovic T. M., Stankovic B., “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 | MR | Zbl

[8] Torres C., “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142 | DOI

[9] Tokmagambetov N., Torebek B.T., “Fractional Analogue of Sturm-Liouville Operator”, Documenta Mathematica, 21 (2016), 1503–1514 | MR | Zbl