A priori estimates of the solution boundary value problems for the convection-diffusion equation of fractional order
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 54-60
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the method of energy inequalities obtained a priori estimates of the first and third boundary value problems for the convection-diffusion equation of fractional order, from which follows the uniqueness and continuous dependence of the solution of the problems posed on the input data.
Mots-clés : convection-diffusion equation
Keywords: boundary-value problem, a priori estimate.
@article{VKAM_2018_4_a5,
     author = {E. M. Shogenova},
     title = {A priori estimates of the solution boundary value problems for the convection-diffusion equation of fractional order},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {54--60},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a5/}
}
TY  - JOUR
AU  - E. M. Shogenova
TI  - A priori estimates of the solution boundary value problems for the convection-diffusion equation of fractional order
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 54
EP  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a5/
LA  - ru
ID  - VKAM_2018_4_a5
ER  - 
%0 Journal Article
%A E. M. Shogenova
%T A priori estimates of the solution boundary value problems for the convection-diffusion equation of fractional order
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 54-60
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a5/
%G ru
%F VKAM_2018_4_a5
E. M. Shogenova. A priori estimates of the solution boundary value problems for the convection-diffusion equation of fractional order. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 54-60. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a5/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp. (in Russian)

[2] Shogenov V. H., Shkhanukov-Lafishev M. Kh., Beshtoev H. M., Drobnye proizvodnye: interpretaciya i nekotorye primeneniya v fizike, Soobshcheniya obedinennogo instituta yadernyh issledovanij, 1997

[3] Shkhanukov-Lafishev M. Kh., Taukenova F. I., “Raznostnye metody resheniya kraevykh zadach dlya differencialnykh uravneniy drobnogo poryadka”, Zhurnal vychislitelnoy matematiki i matematicheskoy fiziki, 46:10 (2006), 1871–1881 (in Russian) | MR

[4] Khagazheeva A. A., Alikhanov A. A., “Apriornaya ocenka resheniya pervoj kraevoj zadachi dlya uravneniya diffuzii s operatorami drobnogo integro-differencirovaniya”, Algebra, analiz i smezhnye voprosy matematicheskogo modelirovaniya, YUMI VNC RAN i RSO-A (Vladikavkaz, 26-27 iyunya 2015), Tezisy dokladov, 106–107 (in Russian)

[5] Alikhanov A. A., “A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations”, Differential Equations, 46:5 (2010), 658–664 | MR | Zbl

[6] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Applied Mathematics and Computation, 2012, no. 219, 3938–3946 | DOI | MR | Zbl

[7] Alikhanov A. A., “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Applied Mathematics and Computation, 2015, no. 268, 12–22 | DOI | MR