Uniqueness of a solution to the Dirichlet problem for a multidimensional fractional partial differential equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 50-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The uniqueness theorem for the solution of the Dirichlet problem for a multidimensional partial differential equation of fractional order in an unbounded domain is proved. The equation under study is an equation of the second order elliptic type when the orders of fractional derivatives are integer.
Keywords: Dirichlet problem in unbounded domain, Riemann–Liouville fractional derivative, Caputo fractional derivative
Mots-clés : multidimensional elliptic equation.
@article{VKAM_2018_4_a4,
     author = {O. Kh. Masaeva},
     title = {Uniqueness of a solution to the {Dirichlet} problem for a multidimensional fractional partial differential equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {50--53},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/}
}
TY  - JOUR
AU  - O. Kh. Masaeva
TI  - Uniqueness of a solution to the Dirichlet problem for a multidimensional fractional partial differential equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 50
EP  - 53
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/
LA  - ru
ID  - VKAM_2018_4_a4
ER  - 
%0 Journal Article
%A O. Kh. Masaeva
%T Uniqueness of a solution to the Dirichlet problem for a multidimensional fractional partial differential equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 50-53
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/
%G ru
%F VKAM_2018_4_a4
O. Kh. Masaeva. Uniqueness of a solution to the Dirichlet problem for a multidimensional fractional partial differential equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 50-53. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] Lopushanska G. P., “Basic boundary value problems for one equation with fractional derivatives,”, Ukrainian Mathematical Journal Ukr. Mat. Zh., 51:1 (1999), 51–65 | DOI | MR

[3] Ferreira M., Vieira N, “Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives”, Complex variables and elliptic equations, 62:9 (2017) | DOI | MR

[4] Masaeva O. H., “Princip ehkstremuma dlya fraktal'nogo ehllipticheskogo uravneniya”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 16:4 (2014), 31–35

[5] Masaeva O. H., “Edinstvennost' resheniya zadachi Dirihle dlya uravneniya s fraktal'nym operatorom Laplasa v glavnoj chasti”, Izvestiya KBNC RAN, (68):6 (2015), 127–130