Mots-clés : multidimensional elliptic equation.
@article{VKAM_2018_4_a4,
author = {O. Kh. Masaeva},
title = {Uniqueness of a solution to the {Dirichlet} problem for a multidimensional fractional partial differential equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {50--53},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/}
}
TY - JOUR AU - O. Kh. Masaeva TI - Uniqueness of a solution to the Dirichlet problem for a multidimensional fractional partial differential equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 50 EP - 53 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/ LA - ru ID - VKAM_2018_4_a4 ER -
O. Kh. Masaeva. Uniqueness of a solution to the Dirichlet problem for a multidimensional fractional partial differential equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 50-53. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a4/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[2] Lopushanska G. P., “Basic boundary value problems for one equation with fractional derivatives,”, Ukrainian Mathematical Journal Ukr. Mat. Zh., 51:1 (1999), 51–65 | DOI | MR
[3] Ferreira M., Vieira N, “Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives”, Complex variables and elliptic equations, 62:9 (2017) | DOI | MR
[4] Masaeva O. H., “Princip ehkstremuma dlya fraktal'nogo ehllipticheskogo uravneniya”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 16:4 (2014), 31–35
[5] Masaeva O. H., “Edinstvennost' resheniya zadachi Dirihle dlya uravneniya s fraktal'nym operatorom Laplasa v glavnoj chasti”, Izvestiya KBNC RAN, (68):6 (2015), 127–130