Keywords: boundary value problem, fractional derivative, Caputo derivative, equations with multiple characteristics, energy integrals method, uniqueness of the solution.
@article{VKAM_2018_4_a20,
author = {A. M. Shkhagapsoev},
title = {A priori estimate of the solution of a boundary problem with the condition of {Samara} for the generalized third-order equation with multiple characteristics},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {208--212},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a20/}
}
TY - JOUR AU - A. M. Shkhagapsoev TI - A priori estimate of the solution of a boundary problem with the condition of Samara for the generalized third-order equation with multiple characteristics JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 208 EP - 212 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a20/ LA - ru ID - VKAM_2018_4_a20 ER -
%0 Journal Article %A A. M. Shkhagapsoev %T A priori estimate of the solution of a boundary problem with the condition of Samara for the generalized third-order equation with multiple characteristics %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2018 %P 208-212 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a20/ %G ru %F VKAM_2018_4_a20
A. M. Shkhagapsoev. A priori estimate of the solution of a boundary problem with the condition of Samara for the generalized third-order equation with multiple characteristics. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 208-212. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a20/
[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ih prilozheniya, Nauka i tekhnika, Minsk, 1987, 668 pp.
[3] Block H., “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, Ark. mat., astron., fys, 7:13 (1912), 1–34
[4] Del Vecchio E., “Sulle equazioni $Z_{xxx}-Z_{y}+\varphi_1(x,y)=0$, $Z_{xxx}-Z_{yy}+\varphi_1(x,y)=0$”, Mem. Real acad. cienc. Torino., 66 (1915), 1–41 | Zbl
[5] Del Vecchio E., “Sulle deux problems d’integration pour las equazions paraboliques $Z_{xxx}-Z_y=0$, $Z_{xxx}-Z_{yy}=0$”, Ark. mat., astron., fys., 11 (1916), 32–34
[6] Cattabriga L., “Potenzialli di linia edi domino per equation nom paraboliche in olue variabli a caracteristiche multiple”, Rendi del Som. Mat. della Univ. di Padova., 3 (1961), 1–45 | MR
[7] Cattabriga L., “Un problema al kontorno per una equazione di ordine dispary”, Analli della scuola normale superior di pisa fis e mat., 3:2 (1959), 163–169 | MR
[8] Dzhuraev T. D., Kraevye zadachi dlya uravnenij smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1979, 236 pp.
[9] SHkhagapsoev A. M., “Apriornaya ocenka zadachi Kattabriga dlya obobshchennogo uravneniya tret'ego poryadka s kratnymi harakteristikami”, Vestnik KRAUNC. Fiz.-mat. nauki, 2016, no. 1(12), 66–71 | MR | Zbl
[10] SHkhagapsoev A. M., “Apriornye ocenki resheniya kraevyh zadach dlya obobshchennogo uravneniya tret'ego poryadka s kratnymi harakteristikami”, Izvestiya KBNC RAN, 2016, no. 6(74), 96–101
[11] Caputo M., Elasticita e Dissipazione, Bologna, 1969
[12] Alihanov A. A., “Apriornye ocenki reshenij kraevyh zadach dlya uravnenij drobnogo poryadka”, Differencial'nye uravneniya, 2010, no. 5(46), 658–664 | MR | Zbl