Numerical solution for fractional Haller equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 166-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solution of boundary value problems for the Haller equation in differential and difference settings are studied. By the method energy inequalities, a priori estimates are obtained for the solution of the differential problems.
Keywords: fractional derivative, stability and convergence, fractional Haller equation.
@article{VKAM_2018_4_a16,
     author = {Ph. A. Karova},
     title = {Numerical solution for fractional {Haller} equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {166--177},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/}
}
TY  - JOUR
AU  - Ph. A. Karova
TI  - Numerical solution for fractional Haller equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 166
EP  - 177
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/
LA  - ru
ID  - VKAM_2018_4_a16
ER  - 
%0 Journal Article
%A Ph. A. Karova
%T Numerical solution for fractional Haller equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 166-177
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/
%G ru
%F VKAM_2018_4_a16
Ph. A. Karova. Numerical solution for fractional Haller equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 166-177. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/

[1] Goloviznin V. M., Kiselev V. P., Korotkin I. A., CHislennye metody resheniya uravneniya diffuzii s drobnoj proizvodnoj v odnomernom sluchae, Poeroint IBRAE, no. 12, 2003

[2] Goloviznin V. M., Kiselev V. P., Korotkin I. A., YUrkov YU. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskih formaciyah”, Izv. RAN. EHnergetika., 2004, no. 4, 121–130

[3] Goloviznin V. M., Korotkin I. A., “Metody chislennogo resheniya nekotoryh odnomernyh uravnenij s drobnymi proizvodnymi”, Differenc. ur-niya., 42:7 (2006), 907–913 | MR | Zbl

[4] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 2012, no. 219, 3938–3946 | MR | Zbl

[5] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 2015, no. 280, 424–438 | DOI | MR | Zbl

[6] Alihanov A. A., “Ustojchivost' i skhodimost' raznostnyh skhem dlya kraevyh zadach uravneniya diffuzii drobnogo poryadka”, ZHurnal vych. mat. i mat. fiz., 56:4 (2016), 572–586 | DOI | MR | Zbl

[7] Wu Ch., “Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative”, Appl. Num. Math., 2009, no. 59, 2571–2583 | MR | Zbl

[8] Chen C. M., Liu F., Turner I., Anh V., “Numerical methods with fourth-order spatial accuracy for variable order nonlinear Stokes' first problem for a heated generalized second grade fluid”, Comput. Math. Appl., 62 (2011), 971–986 | DOI | MR | Zbl