@article{VKAM_2018_4_a16,
author = {Ph. A. Karova},
title = {Numerical solution for fractional {Haller} equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {166--177},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/}
}
Ph. A. Karova. Numerical solution for fractional Haller equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 166-177. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/
[1] Goloviznin V. M., Kiselev V. P., Korotkin I. A., CHislennye metody resheniya uravneniya diffuzii s drobnoj proizvodnoj v odnomernom sluchae, Poeroint IBRAE, no. 12, 2003
[2] Goloviznin V. M., Kiselev V. P., Korotkin I. A., YUrkov YU. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskih formaciyah”, Izv. RAN. EHnergetika., 2004, no. 4, 121–130
[3] Goloviznin V. M., Korotkin I. A., “Metody chislennogo resheniya nekotoryh odnomernyh uravnenij s drobnymi proizvodnymi”, Differenc. ur-niya., 42:7 (2006), 907–913 | MR | Zbl
[4] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 2012, no. 219, 3938–3946 | MR | Zbl
[5] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 2015, no. 280, 424–438 | DOI | MR | Zbl
[6] Alihanov A. A., “Ustojchivost' i skhodimost' raznostnyh skhem dlya kraevyh zadach uravneniya diffuzii drobnogo poryadka”, ZHurnal vych. mat. i mat. fiz., 56:4 (2016), 572–586 | DOI | MR | Zbl
[7] Wu Ch., “Numerical solution for Stokes' first problem for a heated generalized second grade fluid with fractional derivative”, Appl. Num. Math., 2009, no. 59, 2571–2583 | MR | Zbl
[8] Chen C. M., Liu F., Turner I., Anh V., “Numerical methods with fourth-order spatial accuracy for variable order nonlinear Stokes' first problem for a heated generalized second grade fluid”, Comput. Math. Appl., 62 (2011), 971–986 | DOI | MR | Zbl