Numerical solution for fractional Haller equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 166-177

Voir la notice de l'article provenant de la source Math-Net.Ru

Solution of boundary value problems for the Haller equation in differential and difference settings are studied. By the method energy inequalities, a priori estimates are obtained for the solution of the differential problems.
Keywords: fractional derivative, stability and convergence, fractional Haller equation.
@article{VKAM_2018_4_a16,
     author = {Ph. A. Karova},
     title = {Numerical solution for fractional {Haller} equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {166--177},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/}
}
TY  - JOUR
AU  - Ph. A. Karova
TI  - Numerical solution for fractional Haller equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 166
EP  - 177
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/
LA  - ru
ID  - VKAM_2018_4_a16
ER  - 
%0 Journal Article
%A Ph. A. Karova
%T Numerical solution for fractional Haller equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 166-177
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/
%G ru
%F VKAM_2018_4_a16
Ph. A. Karova. Numerical solution for fractional Haller equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 166-177. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a16/