A solution with nonlocal effect to the Steiner problem in networks
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 148-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents optimization algorithms and methods for Steiner flow network problem employing optimal rank dynamic mode decomposition.
Keywords: Steiner flow networks, rank optimization, computer design.
Mots-clés : dynamic mode decomposition
@article{VKAM_2018_4_a14,
     author = {M. A. Bagov},
     title = {A solution with nonlocal effect to the {Steiner} problem in networks},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {148--157},
     year = {2018},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a14/}
}
TY  - JOUR
AU  - M. A. Bagov
TI  - A solution with nonlocal effect to the Steiner problem in networks
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 148
EP  - 157
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a14/
LA  - ru
ID  - VKAM_2018_4_a14
ER  - 
%0 Journal Article
%A M. A. Bagov
%T A solution with nonlocal effect to the Steiner problem in networks
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 148-157
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2018_4_a14/
%G ru
%F VKAM_2018_4_a14
M. A. Bagov. A solution with nonlocal effect to the Steiner problem in networks. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 148-157. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a14/

[1] Gilbert EH.N., Pollak G.O., “Minimal'nye derev'ya SHtejnera”, Kiberneticheskij sbornik, 1971, no. 1(6), 19–49

[2] Gordeev EH.N., Tarascov O.G., “Zadacha SHtejnera. Obzor”, Diskretnaya matematika, 2 (1993), 3–28 | Zbl

[3] Melzak Z.A., “On the problem of Steiner”, Canad. Math. Bull, 4 (1961), 143–148 | DOI | MR | Zbl

[4] Cockayne E.J., “On the efficiency of the algorithm for Steiner minimal trees”, SIAM J. Appl. Math, 18 (1970), 150–159 | DOI | MR | Zbl

[5] Boyce W.M., “An improved program for the full Steiner tree problem”, ACM Trans. jn Math. Software, 3 (1977), 359–385 | DOI | MR | Zbl

[6] Boyce W. M., Seery J. B., STEINER 72: An improved version of the minimal network problem., Rech. Rep., 35, Comp.Sci. Res. CTR. Bell. Lab., Murray Hill, N.-Y.

[7] Panyukov A.V., “Topologicheskie metody resheniya zadachi SHtejnera na grafe”, Avtomatika i telemekhanika, 2004, no. 3, 89–99 | MR | Zbl

[8] Kel'mans A. K., “Postroenie minimal'nogo pokryvayushchego dereva”, Kibernetika i upravlenie, Nauka, M., 1967, 115–130

[9] Lotarev D.T., Uzdemir A.P., “Preobrazovanie zadachi SHtejnera na evklidovoj ploskosti k zadache SHtejnera na grafe”, Avtomatika i telemekhanika, 2005, no. 10, 80–92 | MR | Zbl

[10] Korte B., Promel H.-J., Steger A., Steiner trees in VLSI-layout, Rep. 89566-OR, Inst fur Okon. und Op. Res. Rheinische, Fr.-Wil.-Univ.-Bonn, 1989

[11] Lotarev D. T., “Zadacha SHtejnera dlya transportnoj seti na poverhnosti zadannoj cifrovoj model'yu”, Avtomatika i telemekhanika, 1980, no. 10, 104–115 | MR | Zbl

[12] Gilbert E. N., “Minimal Cost Communication Networks”, Bell System technological Journal, 1967, no. 9, 48–50

[13] Bagov M. A, Kudaev V. CH., “Lokal'noe reshenie setevoj zadachi SHtejnera”, Doklady Adygskoj (CHerkesskoj) Akademii nauk, 2014, no. 16(4), 9–14

[14] Bagov M. A, Kudaev V. CH., “Preobrazovanie terminal'noj seti v set' SHtejnera”, Izvestiya KBNC RAN, 2015, no. 6(68), 31–37

[15] Bagov M. A., Kudaev V. CH., “Setevaya zadacha SHtejnera s uchetom ehnergeticheskih zatrat”, Vestnik KRAUNC. Fiz.-mat. nauki, 2016, no. 4-1(16), 85–92 | MR | Zbl

[16] Bagov M. A., Kudaev V. CH., “Matematicheskoe modelirovanie i optimizaciya truboprovodnoj seti SHtejnera”, Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN, 2017, no. 1(73), 5–11

[17] Merenkov A.P., Sennova E.V., Sumarokov S.V. i dr., Matematicheskoe modelirovanie i optimizaciya sistem teplo-, vodo-, nefte- i gazosnobzheniya, Nauka, Novosibirsk, 1992, 407 pp.

[18] Bulatov V.P., Kassinskaya L.I., “Nekotorye metody minimizacii vognutoj funkcii na vypuklom mnogogrannike”, Metody optimizacii i ih prilozheniya, Irkutsk, SEHI SO AN SSSR, 1987, 151–172

[19] Mihalevich V. S., Trubin V. A., SHor N. Z., Optimizacionnye zadachi proizvodstvenno-transportnogo planirovaniya, Nauka, M., 1986, 260 pp. | Zbl

[20] Mihalevich V. S., Trubin V. A., SHor N. Z., Optimizacionnye zadachi proizvodstvenno-transportnogo planirovaniya, Nauka, M., 1986, 260 pp.

[21] Trubin V. A., Svojstva i metody resheniya zadach optimal'nogo sinteza setej, Ob-vo "Znanie" USSR, Kiev, 1982, 23 pp.