Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 127-132
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of the development of search methods for effective approximate analytical methods for solving a generalized nonlinear partial differential equation of second order of parabolic type, which is the basis for solving long-term forecast problems of groundwater regime, a method of its reduction to linear differential equations of mixed type with associated boundary integral conditions.
Keywords:
nonlinear parabolic equation, local and nonlocal boundary conditions, approximation, integral condition, loaded equations, equations of mixed type.
@article{VKAM_2018_4_a12,
author = {L. I. Serbina},
title = {Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {127--132},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a12/}
}
L. I. Serbina. Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 127-132. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a12/
[1] Polubarinova-Kochina P.YA., Pryazhinskaya V.G., EHmih V.N., Matematicheskie metody v voprosah orosheniya, M, 1969
[2] Nahushev A. M., Nagruzhennye uravneniya i ih primenenie, Nauka, M., 2012, 231 pp.
[3] Serbina L. I., Nelokal'nye matematicheskie modeli perenosa v vodonosnyh sistemah, Nauka, M., 2007, 167 pp.