Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 127-132
Voir la notice de l'article provenant de la source Math-Net.Ru
In the framework of the development of search methods for effective approximate analytical methods for solving a generalized nonlinear partial differential equation of second order of parabolic type, which is the basis for solving long-term forecast problems of groundwater regime, a method of its reduction to linear differential equations of mixed type with associated boundary integral conditions.
Keywords:
nonlinear parabolic equation, local and nonlocal boundary conditions, approximation, integral condition, loaded equations, equations of mixed type.
@article{VKAM_2018_4_a12,
author = {L. I. Serbina},
title = {Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {127--132},
publisher = {mathdoc},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2018_4_a12/}
}
TY - JOUR AU - L. I. Serbina TI - Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2018 SP - 127 EP - 132 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VKAM_2018_4_a12/ LA - ru ID - VKAM_2018_4_a12 ER -
L. I. Serbina. Approximation of a nonlinear parabolic filtering equation with a loaded mixed-type equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 4 (2018), pp. 127-132. http://geodesic.mathdoc.fr/item/VKAM_2018_4_a12/