The neumann problem for the generalized Laplace equation
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 83-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and uniqueness of the solution of the Neumann problem is proved for the generalized Laplace equation with a fractional derivative in the upper half-plane.
Keywords: Neumann problem, Riemann-Liouville operator, integral transformation with Wright function, generalized Laplace equation.
@article{VKAM_2018_3_a9,
     author = {O. Kh. Masaeva},
     title = {The neumann problem for the generalized {Laplace} equation},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {83--90},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a9/}
}
TY  - JOUR
AU  - O. Kh. Masaeva
TI  - The neumann problem for the generalized Laplace equation
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 83
EP  - 90
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a9/
LA  - ru
ID  - VKAM_2018_3_a9
ER  - 
%0 Journal Article
%A O. Kh. Masaeva
%T The neumann problem for the generalized Laplace equation
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 83-90
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a9/
%G ru
%F VKAM_2018_3_a9
O. Kh. Masaeva. The neumann problem for the generalized Laplace equation. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 83-90. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a9/

[1] Nahushev A. M., Drobnoe ischislenie i ego primenenie svobodnye proizvedeniya, Fizmatlit, M., 2003, 272 pp.

[2] Pskhu A. B., “Analog formuly SHvarca dlya sistemy Koshi–Rimana drobnogo poryadka”, Sovremennye metody v teorii kraevyh zadach, Materialy Voronezhskoj vesennej matematicheskoj shkoly “Pontryaginskie chteniya — XIII”, 2002, S. 127

[3] Masaeva O. H., “Zadacha Dirihle dlya obobshchennogo uravneniya Laplasa s drobnoj proizvodnoj”, CHelyabinskij fiziko-matematicheskij zhurnal, 2:3 (2017), 312–322 | MR

[4] Masaeva O. H., “Edinstvennost' resheniya zadachi Dirihle dlya uravneniya s fraktal'nym operatorom Laplasa v glavnoj chasti”, Izvestiya KBNC RAN, (68)-2:6 (2015), 127–130

[5] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933.), 71–79 | DOI | MR | Zbl

[6] Pskhu A. V., Uravneniya v chastnyh proizvodnyh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[7] Dzhrbashyan M. M., Integral'nye preobrazovaniya i predstavleniya funkcij v kompleksnoj oblasti, Nauka, M., 1966, 672 pp.

[8] Nahushev A. M., “O polozhitel'nosti operatorov nepreryvnogo i diskretnogo differencirovaniya i integrirovaniya ves'ma vazhnyh v drobnom ischislenii i v teorii uravnenij smeshannogo tipa”, Differenc. uravneniya, 34:1 (1998), 101–109 | MR | Zbl