On the solving of the A. A. Dezin problem analogue for a second-order mixed-type equation by the Green’s function method
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 36-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the A. A. Dezin problem analogue is considered for inhomogeneous parabolic-hyperbolic type equation of the second order. We proved the solution uniqueness of the solution to the problem under investigation. The solution representation is written out by the Green’s function method.
Keywords: Dezin problem analogue, parabolic-hyperbolic type equation, nonlocal boundary conditions.
@article{VKAM_2018_3_a3,
     author = {R. A. Kirzhinov},
     title = {On the solving of the {A.} {A.} {Dezin} problem analogue for a second-order mixed-type equation by the {Green{\textquoteright}s} function method},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {36--41},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a3/}
}
TY  - JOUR
AU  - R. A. Kirzhinov
TI  - On the solving of the A. A. Dezin problem analogue for a second-order mixed-type equation by the Green’s function method
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 36
EP  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a3/
LA  - ru
ID  - VKAM_2018_3_a3
ER  - 
%0 Journal Article
%A R. A. Kirzhinov
%T On the solving of the A. A. Dezin problem analogue for a second-order mixed-type equation by the Green’s function method
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 36-41
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a3/
%G ru
%F VKAM_2018_3_a3
R. A. Kirzhinov. On the solving of the A. A. Dezin problem analogue for a second-order mixed-type equation by the Green’s function method. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 36-41. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a3/

[1] A. A. Dezin, “On the solvable extensions of partial differential operators”, Outlines of Join Soviet–American Symposium on Partial Differential Equations. (Novosibirsk, 1963), 1963, 65–66

[2] A. M. Nakhushev, Zadachi so smeshcheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, Moskva, 2006, 287 pp. | Zbl

[3] A. A. Dezin, “The simplest solvable extensions of ultrahyperbolic and pseudoparabolic operators”, Sov. Math., Dokl., 4 (1963), 208–211 | Zbl

[4] Z. A. Nakhusheva, “On a nonlocal problem of A. A. Dezin for the Lavrent’ev–Bitsadze equation”, Differential Equations, 45:8 (2009), 1223–1228 | MR

[5] K. B. Sabitov, V. A. Novikova, “Nonlocal Dezin’s problem for Lavrent’ev–Bitsadze equation”, Russian Math. (Iz. VUZ), 60:6 (2016), 52–62 | DOI

[6] K. B. Sabitov, V. A. Gushchina, “A. A. Dezin’s problem for inhomogeneous Lavrent’ev–Bitsadze equation”, Russian Math. (Iz. VUZ), 61:3 (2017), 31–43 | DOI

[7] V. A. Gushchina, “Nelokal'naya zadacha A. A. Dezina dlya uravneniya smeshannogo ehlliptiko"– giperbolicheskogo tipa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 20:1 (2016), 22–32

[8] Z. A. Nakhusheva, Nelokal'nye kraevye zadachi dlya osnovnykh i smeshannogo tipov differentsial'nykh uravnenii, KBNTs RAN, Nalchik, 2012, 196 pp.

[9] R. A. Kirzhinov, “Analoga zadachi A.",A.",Dezina dlya uravneniya smeshannogo parabolo"– giperbolicheskogo tipa”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 16:2 (2014), 41–46

[10] R. A. Kirzhinov, “O edinstvennosti resheniya analoga zadachi A.",A.",Dezina dlya uravneniya smeshannogo parabolo"– giperbolicheskogo tipa”, Doklady Adygskoj (CHerkesskoj) Mezhdunarodnoj akademii nauk, 17:3 (2015), 28–30