Application of a logical neural network to the classification problem
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 180-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the classification problem is becoming more urgent due to the development of technology and the growth of the processed data volumes. The use of neural networks is mandatory when solving classification problems, because Neural networks have the ability to identify significant features and hidden patterns. The advantages of a logical neural network are: higher classification accuracy, higher learning and retraining.
Keywords: logical neural networks, training, data classification, trace algorithm.
@article{VKAM_2018_3_a20,
     author = {R. A. Zhilov},
     title = {Application of a logical neural network to the classification problem},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {180--183},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a20/}
}
TY  - JOUR
AU  - R. A. Zhilov
TI  - Application of a logical neural network to the classification problem
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 180
EP  - 183
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a20/
LA  - ru
ID  - VKAM_2018_3_a20
ER  - 
%0 Journal Article
%A R. A. Zhilov
%T Application of a logical neural network to the classification problem
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 180-183
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a20/
%G ru
%F VKAM_2018_3_a20
R. A. Zhilov. Application of a logical neural network to the classification problem. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 180-183. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a20/

[1] Dimitrichenko D. P., “Primenenie peremennoznachnyh logicheskih funkcij i nejronnyh setej v sistemah prinyatiya reshenij”, Vestnik KRAUNC. Fiz.-mat. nauki., 4-1(16) (2016), 93–100 | MR | Zbl

[2] Soldatova O. P., Lyozin I. A., “Reshenie zadachi klassifikacii s ispol'zovaniem nejronnyh nechetkih produkcionnyh setej na osnove modeli vyvoda Mamdani – Zade”, Vestnik Samarskogo gos. tekh. Universiteta. Fiz.-mat nauki., 2(35) (2014), 136–148 | DOI | Zbl

[3] Barskij A.B., Logicheskie nejronnye seti, INTUIT: BINOM, M., 2007, 352 pp.