Methodology of the numerical solution equations system of three-dimensional model convective cloud
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 168-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A three-dimensional numerical model of a convective cloud is developed taking into account thermodynamic, microphysical and electrical processes. The model uses a detailed microphysics. The system of equations of the cloud model describing the time variation of the dynamic and microphysical characteristics of the cloud consists of 3 equations of motion, heat and moisture balance equations, 137 equations describing the spectrum of cloud droplets, crystals, and microbubble particles. In addition, in order for the solution to satisfy the continuity equation, it is necessary to solve the three-dimensional elliptic equation for the pressure perturbation at each time step. One of the methods widely used for solving such problems is the splitting method developed by G.I. Marchuk, an improved version of this method, the predictor scheme with a divergent corrector, was successfully used in the modeling of cumulus clouds by R. Pastushkov. The conducted studies showed that, despite the certain complexity in the implementation of this scheme, it provides the necessary stability of the count, an approximation of the second order of accuracy in space and time, and is conservative. Splitting methods for physical processes and componentwise splitting are used (locally-one-dimensional schemes). The equations of the cloud model in finite-difference form were approximated by central and directional differences for spatial variables, as well as directed time differences. The resulting algebraic system was solved by a sweep method.
Keywords: mathematical modeling, three-dimensional model, convective cloud, model equation system, predictor-corrector, local-one-dimensional schemes.
@article{VKAM_2018_3_a19,
     author = {V. A. Shapovalov},
     title = {Methodology of the numerical solution equations system of three-dimensional model convective cloud},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {168--179},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a19/}
}
TY  - JOUR
AU  - V. A. Shapovalov
TI  - Methodology of the numerical solution equations system of three-dimensional model convective cloud
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 168
EP  - 179
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a19/
LA  - ru
ID  - VKAM_2018_3_a19
ER  - 
%0 Journal Article
%A V. A. Shapovalov
%T Methodology of the numerical solution equations system of three-dimensional model convective cloud
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 168-179
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a19/
%G ru
%F VKAM_2018_3_a19
V. A. Shapovalov. Methodology of the numerical solution equations system of three-dimensional model convective cloud. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 168-179. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a19/

[1] Ashabokov B. A. i dr., Fizika gradovyh oblakov i aktivnyh vozdejstvij na nih: sostoyanie i napravleniya razvitiya, Pechatnyj dvor, Nal'chik, 2013, 216 pp.

[2] Kogan E. L., Mazin I. P., Sergeev B. N., Hvorost'yanov V. I., CHislennoe modelirovanie oblakov, Gidrometeoizdat, M., 1984, 186 pp.

[3] Ashabokov B. A., Bejtuganov M. N., Kupovyh G. V., SHapovalov A. V., Prodan K. A., SHapovalov V. A., “CHislennoe modelirovanie ehlektricheskih harakteristik konvektivnyh oblakov”, Izvestiya vuzov. Severo–Kavkazskij region, 2012, no. 6, 65–68

[4] Dovgalyuk YU. A. i dr., “Koncepciya razrabotki trekhmernoj modeli osadkoobrazuyushchego konvektivnogo oblaka II. Mikrofizicheskij blok modeli”, Trudy Glavnoj geofizicheskoj observatorii im. A. I. Voejkova, 2010, no. 562, 7–39

[5] Liu X. L., Niu S. J., “Numerical Simulation of Macro- and Micro-structures of Intense Convective Clouds with a Spectral Bin Microphysics Model”, Adv. Atmos. Sci., 2010, no. 27(5), 1078–1088 | DOI

[6] Lynn B., Khain, A. P., Dudhia J., Rosenfeld D., Pokrovsky A., Seifert A., “Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part 1”, Mon. Wea. Rev., 2005, no. 133, 44–71 | DOI

[7] Mansell E. R., MacGorman D. R., Ziegler C. L., Straka J. M., “Charge structure and lightning sensitivity in a simulated multicell thunderstorm”, J. Geophys. Res., 110:D12101 (2005)

[8] Pruppacher H. R., Klett J. D., Microphysics of clouds and precipitation, 2nd Edition, Springer, Netherlands, 2010, 976 pp.

[9] Straka J. M., Cloud and precipitation microphysics. Principles and Parameterizations, Cambridge University Press, 2009, 392 pp.

[10] Wang P. K., Physics and Dynamics of Clouds and Precipitation, Cambridge University Press, 2013, 467 pp. | MR

[11] Ashabokov B. A., SHapovalov V. A., Ezaova A. G., SHapovalov M. A., “Issledovanie obrazovaniya ledyanoj fazy v moshchnyh konvektivnyh oblakah na osnove trekhmernoj chislennoj modeli”, Estestvennye i tekhnicheskie nauki, 2014, no. 5(73), 78–83

[12] Ashabokov B. A., Shapovalov A. V., Kuliev D. D., Prodan K. A., Shapovalov V. A., “Numerical Simulation of Thermodynamic, Microstructural, and Electric Characteristics of Convective Clouds at the Growth and Mature Stages”, Radiophysics and Quantum Electronics, 56:11 (2014), 811–817 | DOI

[13] Andronov A. A., Leontovich E. A., Gordon I. M., Majer A. G., Teoriya bifurkacij dinamicheskih sistem na ploskosti, Nauka, M., 1967, 568 pp. | MR

[14] Ashabokov B. A., Fedchenko L. M., SHapovalov A. V., Ezaova A. G., SHapovalov M. A., “CHislennye ehksperimenty po issledovaniyu formirovaniya mikrostrukturnyh harakteristik grozogradovyh oblakov”, Izvestiya vysshih uchebnyh zavedenij. Severo-Kavkazskij region. Seriya: estestvennye nauki, 2014, no. 3(181), 40–44

[15] Bekryaev V. I., Gurovich M. V., “Nestacionarnaya chislennaya model' Cb”, Trudy GGO, 1991, no. 538, 109–121

[16] Bekryaev V. I., Nekotorye voprosy fiziki oblakov i aktivnyh vozdejstvij na nih, Izd-vo RGGMU, SPb., 2007, 336 pp.

[17] Bahvalov N. S., ZHidkov N. P., Kobel'kov G. M., CHislennye metody, Nauka, M., 1987, 557 pp. | MR

[18] Marchuk G. I., CHislennye metody v prognoze pogody, Gidrometeoizdat, L., 1967, 353 pp.

[19] Marchuk G. I., Metody vychislitel'noj matematiki, Nauka, M., 1989, 608 pp.

[20] Anderson D., Tannekhil Dzh., Pletcher R., Vychislitel'naya gidromekhanika i teploobmen, v. 1, Mir, M., 1990, 384 pp.

[21] Samarskij A. A., Teoriya raznostnyh skhem, Nauka, M., 1983, 616 pp. | MR

[22] Mezinger F., Arakava A., CHislennye metody, ispol'zuemye v atmosfernyh modelyah, Perevod s anglijskogo pod redakciej V. P. Sadokova, v. 2, Gidrometeoizdat, L., 1982, 360 pp.

[23] Pastushkov R. S., “CHislennoe modelirovanie vzaimodejstviya konvektivnyh oblakov s okruzhayushchej ih atmosferoj”, Trudy CAO, 1972, no. 108, 125

[24] Khvorostyanov V.I., Curry J.A., Thermodynamics, Kinetics, and Microphysics of Clouds, Cambridge University Press, 2014, 782 pp.

[25] Berezin S. B., Kargapol'cev I. S., Markovskij N. D., Saharnyh N. A., “Parallel'naya realizaciya metoda rasshchepleniya dlya sistemy iz neskol'kih GPU s primeneniem v zadachah aehrogidrodinamiki”, Vestnik Nizhegorodskogo universiteta im. N.I.Lobachevskogo, 2012, no. 5(2), 246–252