A local one-dimensional scheme for parabolic equation of general form, describing microphysical processes in convective clouds
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 158-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers a locally one-dimensional scheme for a parabolic equation of general form in a p-dimensional parallelepiped.To describe coagulation processes in the cloud, the equation under study involves a non-local source of a specific type [1]. An a priori estimate for the solution to the locally one-dimensional scheme is obtained and its convergence is proved. Sign definiteness for the operator in the principal part of the equation is not assumed.
Keywords: boundary value problem, locally one-dimensional scheme, stability, approximation error.
Mots-clés : scheme convergence
@article{VKAM_2018_3_a18,
     author = {B. A. Ashabokov and I. D. Taisaev and M. H. Shhanukov-Lafishev},
     title = {A local one-dimensional scheme for parabolic equation of general form, describing microphysical processes in convective clouds},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {158--167},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a18/}
}
TY  - JOUR
AU  - B. A. Ashabokov
AU  - I. D. Taisaev
AU  - M. H. Shhanukov-Lafishev
TI  - A local one-dimensional scheme for parabolic equation of general form, describing microphysical processes in convective clouds
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 158
EP  - 167
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a18/
LA  - ru
ID  - VKAM_2018_3_a18
ER  - 
%0 Journal Article
%A B. A. Ashabokov
%A I. D. Taisaev
%A M. H. Shhanukov-Lafishev
%T A local one-dimensional scheme for parabolic equation of general form, describing microphysical processes in convective clouds
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 158-167
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a18/
%G ru
%F VKAM_2018_3_a18
B. A. Ashabokov; I. D. Taisaev; M. H. Shhanukov-Lafishev. A local one-dimensional scheme for parabolic equation of general form, describing microphysical processes in convective clouds. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 158-167. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a18/

[1] Ashabokov B. A., SHapovalov A. V., Konvektivnye oblaka: chislennye modeli i rezul'taty modelirovaniya v estestvennyh usloviyah i pri aktivnom vozdejstvii, Izdatel'stvo KBNC RAN, Nal'chik, 2008, 252 pp.

[2] Kogan E. L. i dr., CHislennoe modelirovanie oblakov, Gidrometeoizdat, M., 1984, 178 pp.

[3] Berry E. X., “Cloud Droplets Growth by Collection”, J. Atmos. Sci., 24:6 (1967), 688–701 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[4] Berry E. X., Reinhardt R. L., “An Analysis of Gloud Drop Growth by Collection”, J. Atmos. Sci., 31:7 (1974), 1825–1831 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Samarskij A. A., Teoriya raznostnyh skhem, Nauka, M., 1977, 656 pp. | MR

[6] Andreev I. B., “O skhodimosti raznostnyh skhem, approksimiruyushchih vtoruyu i tret'yu kraevye zadachi dlya ehllipticheskih uravnenij”, ZH. vychisl. matem. i matem. fiz., 8:6 (1968), 1218–1231 | Zbl

[7] Samarskij A. A., Gulin A. V., Ustojchivost' raznostnyh skhem, Nauka, M., 1973, 480 pp.