On one model of population dynamics with regard to sex structure
Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 124-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we consider a mathematical model describing population dynamics in view of the sexual structure. We obtain a nonlinear convolution equation for determining the density of family pairs, and discuss approaches to its solution.
Keywords: sexual structure model, population dynamics, density of family pairs, nonlinear integral equation, convolution root.
@article{VKAM_2018_3_a14,
     author = {F. M. Losanova and R. O. Kenetova},
     title = {On one model of population dynamics with regard to sex structure},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {124--130},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2018_3_a14/}
}
TY  - JOUR
AU  - F. M. Losanova
AU  - R. O. Kenetova
TI  - On one model of population dynamics with regard to sex structure
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2018
SP  - 124
EP  - 130
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2018_3_a14/
LA  - ru
ID  - VKAM_2018_3_a14
ER  - 
%0 Journal Article
%A F. M. Losanova
%A R. O. Kenetova
%T On one model of population dynamics with regard to sex structure
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2018
%P 124-130
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2018_3_a14/
%G ru
%F VKAM_2018_3_a14
F. M. Losanova; R. O. Kenetova. On one model of population dynamics with regard to sex structure. Vestnik KRAUNC. Fiziko-matematičeskie nauki, no. 3 (2018), pp. 124-130. http://geodesic.mathdoc.fr/item/VKAM_2018_3_a14/

[1] Pollard J. H., Stochastic processes and population growth, Cambridge University Press, 1973

[2] Kendall D. G., “Models for pair formation in bisexual populations”, Roy. Statist. Soc., Ser B 2 (1949), 230-264 | Zbl

[3] Keyfitz N., “The mathematics of sex and marriage”, Proceedings of the Sixth Berkeley Symposion on Mathematical Statistics and Probability, v. IV, Biology and health, 1972, 89-108 | MR

[4] McFarland D. D., “Comparison of alternative marriage models”, Population dynamics, Academic Press, New York-London, 1972, 89-106 | DOI | MR

[5] Parlett B., “Can there be a marriage function?”, Population Dynamics, Academic Press, New York-London, 1972, 107-135 | DOI | MR

[6] Fredrickson A. G., “A mathematical theory of age structure in sexual populations: Random mating and monogamous marriage models”, Math. Biosci., 10 (1971), 117-143 | DOI

[7] Staroverov, O. V., “Reproduction of the structure of the population and marriages”, Ekonomika i matemati6eskije metody, 13 (1977), 72-82 | MR

[8] Hadeler K. P., Waldstatter R., Worz-Busekros A., “Models for pair formation in bisexual populations”, J. Math. Biol., 26:6 (1988), 635-639 | DOI | MR

[9] Nahushev A.M., Nagruzhennye uravneniya i ih primenenie, Nauka, M., 2012, 232 pp.